UNIVERSITY OF MUMBAI

No. UG/730f 2018-19

CIRCULAR:-

Attention of the Principals of the affiliated Colleges and Directors of the recognized Institutions in Science & Technology Faculty is invited to this office Circular Nos. UG/156 of 2016-17, dated 16th November, 2016 relating to syllabus of the Bachelor of Science (B.Sc.) degree course.

They are hereby informed that the recommendations made by the Board of Studies in Chemistry at its meeting held on 28th May, 2018 have been accepted by the Academic Council at its meeting held on 14th June, 2018 <u>vide</u> item No. 4.41 and that in accordance therewith, the revised syllabus as per the (CBCS) for the Chemistry of T.Y.B.Sc. Physical Chemistry, Inorganic Chemistry, Organic Chemistry and Analytical Chemistry (Sem - V & VI) (3 and 6 Units) including Applied Component Drugs and Dyes, Heavy Fine Chemicals and Petrochemicals has been brought into force with effect from the academic year 2018-19, accordingly. (The same is available on the University's website <u>www.mu.ac.in</u>).

ullan

(Dr. Dinesh Kamble) I/c REGISTRAR

MUMBAI - 400 032 6th June, 2018 To July

The Principals of the affiliated Colleges & Directors of the recognized Institutions in Science & Technology Faculty. (Circular No. UG/334 of 2017-18 dated 9th January, 2018.)

A.C./4.41/14/06/2018

No. UG/ 73-A of 2018

MUMBAI-400 032

th June, 2018 July

Copy forwarded with Compliments for information to:-

- 1) The I/c Dean, Faculty of Science & Technology,
- 2) The Chairman, Board of Studies in Chemistry,
- 3) The Director, Board of Examinations and Evaluation,
- 4) The Director, Board of Students Development,
- 5) The Co-Ordinator, University Computerization Centre,

unden

(Dr. Dinesh Kamble) I/c REGISTRAR

T.Y.B.Sc. CHEMISTRY (6 UNITS) Choice Based Semester and Grading System To be implemented from the Academic year 2018-2019

SEMESTER V

PHYSICAL CHEMISTRY

COURSE CODE: USCH502

CREDITS: 02

LECTURES: 60

UNIT	TOPIC	NO. OF
		Lectures
UNIT I	1.0 MOLECULAR SPECTROSCOPY	15L
	 1.1 Rotational Spectrum: Introduction to dipole moment, polarization of a bond, bond moment, molecular structure, .Rotational spectrum of a diatomic molecule, rigid rotor, moment of inertia, energy levels, conditions for obtaining pure rotational spectrum, selection rule, nature of spectrum, determination of internuclear distance and isotopic shift. 1.2 Vibrational spectrum: Vibrational motion, degrees of freedom, modes of vibration, vibrational spectrum of a diatomic molecule, simple harmonic oscillator, energy levels, zero point energy, conditions for obtaining vibrational spectrum, selection rule, nature of spectrum. 1.3 Vibrational-Rotational spectrum of diatomic molecule: energy levels, selection rule, nature of spectrum. 1.3 Vibrational-Rotational spectrum of vibrational-rotational spectrum in determination of force constant and its significance. Infrared spectra of simple molecules like H₂O and CO₂. 1.4 Raman Spectroscopy : Scattering of electromagnetic radiation, Rayleigh scattering, Raman scattering, nature of Raman spectrum, Stoke's lines, anti-Stoke's lines, Raman shift, quantum theory of Raman spectrum, comparative study of IR and Raman spectra, rule of mutual exclusion-CO₂ molecule. 	
UNIT II	2.0 CHEMICAL THERMODYNAMICS	10 L
	2.1.1Colligative properties: Vapour pressure and relative lowering of vapour pressure.Measurement of lowering of vapour pressure - Static and Dynamic method.	
	 2.1.2 Solutions of Solid in Liquid: 2.1.2.1 Elevation in boiling point of a solution, thermodynamic derivation relating elevation in boiling point of the solution and molar mass of non-volatile solute. 2.1.2.2 Depression in freezing point of a solution, thermodynamic 	

	derivation relating the depression in the freezing point of a solution and the molar mass of the non-volatile solute. Beckmann Method and Rast Method.	
	2.1.3 Osmotic Pressure : Introduction, thermodynamic derivation of Van't Hoff equation, Van't Hoff Factor. Measurement of Osmotic Pressure - Berkeley and Hartley's Method, Reverse Osmosis.	
	2.2 CHEMICAL KINETICS	5 L
	 2.2.1 Collision theory of reaction rates : Application of collision theory to 1. Unimolecular reaction Lindemann theory and 2. Bimolecular reaction. (derivation expected for both) 	
	2.2.2 Classification of reactions as slow, fast and ultra -fast. Study of kinetics of fast reactions by Stop flow method and Flash photolysis (No derivation expected).	
	2.0 NILCI EAD CHEMISTRY	151
	3.1 Introduction: Basic terms-radioactive constants (decay	13L
	constant, half life and average life) and units of radioactivity	
	3.2 Detection and Measurement of Radioactivity: Types and	
	characteristics of nuclear radiations, behaviour of ion pairs in	
	electric field, detection and measurement of nuclear radiations	
	Using G. M. Counter and Scintillation Counter.	
	reaction mechanism age determination - dating by C^{14}	
	3.4 Nuclear reactions: nuclear transmutation (one example for each projectile), artificial radioactivity, Q - value of nuclear reaction, threshold energy.	
	3.5 Fission Process : Fissile and fertile material, nuclear fission, chain reaction, factor controlling fission process. multiplication factor and critical size or mass of fissionable material, nuclear power reactor and breeder reactor.	
	3.6 Fusion Process : Thermonuclear reactions occurring on stellar bodies and earth.	
UNIT IV	4.1 SURFACE CHEMISTRY	6L
	 4.1.1 Adsorption: Physical and Chemical Adsorption, types of adsorption isotherms . Langmuir's adsorption isotherm (Postulates and derivation expected). B.E.T. equation for multilayer adsorption, (derivation not expected). Determination of surface area of an adsorbent using B.E.T. equation. 	
	4.2 COLLOIDAL STATE	9L
	4.2.1 Introduction to colloids - Emulsions, Gels and Sols	
	 4.2.2 Electrical Properties : Origin of charges on colloidal particles, Concept of electrical double layer, zeta potential, Helmholtz and Stern model. Electro-kinetic phenomena - Electrophoresis, Electro-osmosis, Streaming potential, Sedimentation potential; Donnan Membrane 	

Equilibrium.	
4.2.3 Colloidal electrolytes : Introduction, micelle formation,	
4.2.4 Surfactants: Classification and applications of surfactants in detergents and food industry.	

Reference Books :

1. Physical Chemistry, Ira Levine, 5th Edition, 2002 Tata McGraw Hill Publishing Co.Ltd.

2. Physical Chemistry, P.C. Rakshit, 6th Edition, 2001, Sarat Book Distributors, Kolkota.

3. Physical Chemistry, R.J. Silbey, & R.A. Alberty, 3rd edition, John Wiley & Sons, Inc [part 1]

4. Physical Chemistry, G. Castellan, 3rd edition, 5th Reprint, 1995 Narosa Publishing House.

5. Modern Electrochemistry, J.O.M Bockris & A.K.N. Reddy, Maria Gamboa – Aldeco 2nd Edition, 1st Indian reprint,2006 Springer

6. Fundamental of Molecular Spectroscopy, 4th Edn., Colin N Banwell and Elaine M McCash Tata McGraw Hill Publishing Co. Ltd. New Delhi, 2008.

7. Physical Chemistry, G.M. Barrow, 6th Edition, Tata McGraw Hill Publishing Co. Ltd. New Delhi.

8. The Elements of Physical Chemistry, P.W. Atkins, 2nd Edition, Oxford University Press Oxford.

9. Physical Chemistry, G.K. Vemullapallie, 1997, Prentice Hall of India, Pvt.Ltd. New Delhi.

10. Principles of Physical Chemistry B.R. Puri, L.R. Sharma, M.S. Pathania, VISHAL PUBLISHING Company, 2008.

11. Textbook of Polymer Science, Fred W Bilmeyer, John Wiley & Sons (Asia) Ple. Ltd., Singapore, 2007.

12. Polymer Science, V.R. Gowariker, N.V. Viswanathan, Jayadev Sreedhar, New Age International (P) Ltd., Publishers, 2005.

13. Essentials of Nuclear Chemistry, Arnikar, Hari Jeevan, New Age International (P) Ltd., Publishers, 2011..

14. Chemical Kinetics, K. Laidler, Pearson Education India, 1987.

T.Y.B.Sc Physical Chemistry Practical

SEMESTER V

PHYSICAL CHEMISTRY

COURSE CODE: USCHP01

CREDITS: 02

Non-Instrumental

Colligative properties

To determine the molecular weight of compound by Rast Method

Chemical Kinetics

To determine the order between $K_2S_2O_8$ and KI by fractional change method. (six units and three units)

Surface phenomena

To investigate the adsorption of acetic acid on activated charcoal and test the validity of Freundlich adsorption isotherm.

Instrumental

Potentiometry

To determine the solubility product and solubility of AgCl potentiometrically using chemical cell. **Conductometry**

To determine the velocity constant of alkaline hydrolysis of ethyl acetate by conductometric method.

pH-metry

To determine acidic and basic dissociation constants of amino acid and hence to calculate isoelectric point.

Reference books

1. Practical Physical Chemistry 3rd edition A.M.James and F.E. Prichard , Longman publication

2. Experiments in Physical Chemistry R.C. Das and B. Behra, Tata Mc Graw Hill

3. Advanced Practical Physical Chemistry J.B.Yadav, Goel Publishing House

4. Advanced Experimental Chemistry. Vol-I J.N.Gurtu and R Kapoor, S.Chand and Co.

5. Experimental Physical Chemistry By V.D.Athawale.

6. Senior Practical Physical Chemistry By: B. D.Khosla, V. C. Garg and A. Gulati, R Chand and Co..2011

SEMESTER VI

PHYSICAL CHEMISTRY

COURSE CODE: USCH601

CREDITS: 02

LECTURES: 60

UNIT I	1.1 ELECTROCHEMISTRY	7L
	1.1.1 Activity and Activity Coefficient: Lewis concept, ionic strength, Mean ionic activity and mean ionic activity coefficient of an electrolyte, expression for activities of electrolytes. Debye-Huckel limiting law (No derivation).	
	1.1.2 Classification of cells: Chemical cells and Concentration cells.Chemical cells with and without transference, Electrode Concentration cells, Electrolyte concentration cells with and without transference	

	(derivations are expected),	
	1.2 APPLIED ELECTROCHEMISTRY	8L
	1.2.1 Polarization : concentration polarization and it's elimination	
	1.2.2 Decomposition Potential and Overvoltage : Introduction, experimental determination of decomposition potential, factors affecting decomposition potential. Tafel's equation for hydrogen overvoltage, experimental determination of over –voltage	
UNIT II	2.0 POLYMERS	15L
	2.1 Basic terms : macromolecule, monomer, repeat unit, degree of polymerization.	
	2.2. Classification of polymers: Classification based on source, structure, thermal response and physical properties.	
	2.3. Molar masses of polymers: Number average, Weight average, Viscosity average molar mass, Monodispersity and Polydispersity	
	2.4. Method of determining molar masses of polymers : Viscosity method using Ostwald Viscometer. (derivation expected)	
	2.5. Light Emitting Polymers : Introduction, Characteristics, Method of preparation and applications.	
	2.6. Antioxidants and Stabilizers : Antioxidants , Ultraviolet stabilizers, Colourants, Antistatic agents and Curing agents.	
UNIT III	3.1 BASICS OF QUANTUM CHEMISTRY	10 L
	3.1.1 Classical mechanics : Introduction, limitations of classical mechanics, Black body radiation, photoelectric effect, Compton effect.	
	3.1.2 Quantum mechanics : Introduction, Planck's theory of quantization, wave particle duality, de –Broglie's equation, Heisenberg's uncertainty principle.	
	3.1.3 Progressive and standing waves- Introduction, boundary conditions, Schrodinger's time independent wave equation (No derivation expected), interpretation and properties of wave function.	
	3.1.4 Quantum mechanics : State function and its significance, Concept of operators - definition, addition, subtraction and multiplication of operators, commutative and non - commutative operators, linear operator, Hamiltonian operator, Eigen function and Eigen value.	
	3.2 RENEWABLE ENERGY RESOURCES	5L
	3.2.1. Renewable energy resources : Introduction.	
	3.2.2 Solar energy : Solar cells, Photovoltaic effect, Differences between conductors, semiconductors , insulators and its band gap, Semiconductors as solar energy converters. Silicon solar cell	
	3.2.3. Hydrogen : Fuel of the future, production of hydrogen by direct electrolysis of water, advantages of hydrogen as a universal energy medium.	

UNIT IV	4.1 NMR -NUCLEAR MAGNETIC RESONANCE	7L
	SPECTROSCOPY	
	4.1.1. Principle : Nuclear spin, magnetic moment, nuclear 'g'	
	factor, energy levels, Larmor precession, Relaxation processes in	
	NMR (spin -spin relaxation and spin - lattice relaxation).	
	4.1.2. Instrumentation: NMR Spectrometer	
	L L	
	4.2 ELECTRON SPIN RESONANCE SPECTROSCOPY	
	4.2.1. Principle : fundamental equation, g-value -dimensionless constant or electron g-factor, hyperfine splitting.	8L
	4.2.2. Instrumentation : ESR spectrometer, ESR spectrum of hydrogen and deuterium.	

Note: Numericals and Word Problems are Expected from All Units

Reference Books :

1. Physical Chemistry, Ira Levine, 5th Edition, 2002 Tata McGraw Hill Publishing Co.Ltd.

2. Physical Chemistry, P.C. Rakshit, 6th Edition, 2001, Sarat Book Distributors, Kolkota.

3. Physical Chemistry, R.J. Silbey, & R.A. Alberty, 3rd edition, John Wiley & Sons, Inc [part 1]

4. Physical Chemistry, G. Castellan, 3rd edition, 5th Reprint, 1995 Narosa Publishing House.

5. Modern Electrochemistry, J.O.M Bockris & A.K.N. Reddy, Maria Gamboa – Aldeco 2nd Edition, 1st Indian reprint,2006 Springer

6. Fundamental of Molecular Spectroscopy, 4th Edn., Colin N Banwell and Elaine M McCash Tata McGraw Hill Publishing Co. Ltd. New Delhi, 2008.

7. Physical Chemistry, G.M. Barrow, 6th Edition, Tata McGraw Hill Publishing Co. Ltd. New Delhi.

8. The Elements of Physical Chemistry, P.W. Atkins, 2nd Edition, Oxford University Press Oxford.

9. Physical Chemistry, G.K. Vemullapallie, 1997, Prentice Hall of India, Pvt.Ltd. New Delhi.

10. Principles of Physical Chemistry B.R. Puri, L.R. Sharma, M.S. Pathania, VISHAL PUBLISHING Company, 2008.

11. Textbook of Polymer Science, Fred W Bilmeyer, John Wiley & Sons (Asia) Ple. Ltd., Singapore, 2007.

12. Polymer Science, V.R. Gowariker, N.V. Viswanathan, Jayadev Sreedhar, New Age International (P) Ltd., Publishers, 2005.

13. Essentials of Nuclear Chemistry, Arnikar, Hari Jeevan , New Age International (P) Ltd., Publishers, 2011..

14. Chemical Kinetics, K. Laidler, Pearson Education India, 1987.

T.Y.B.Sc Physical Chemistry Practical

SEMESTER VI

PHYSICAL CHEMISTRY

COURSE CODE: USCHP02

CREDITS: 02

Non-Instrumental

Chemical Kinetics

To interpret the order of reaction graphically from the given experimental data and calculate the specific rate constant.

(No fractional order)

Viscosity

To determine the molecular weight of high polymer polyvinyl alcohol (PVA) by viscosity measurement.

Instrumental

Potentiometry

To determine the amount of iodide, bromide and chloride in the mixture by potentiometric titration with silver nitrate.

To determine the number of electrons in the redox reaction between ferrous ammonium sulphate and cerric sulphate potentiometrically.

Conductometry

To titrate a mixture of weak acid and strong acid against strong base and estimate the amount of each acid in the mixture conductometrically.

Colorimetry

To estimate the amount of Fe(III) in the complex formation with salicylic acid by Static Method.

Reference books

1. Practical Physical Chemistry 3rd edition A.M.James and F.E. Prichard , Longman publication

2. Experiments in Physical Chemistry R.C. Das and B. Behra, Tata Mc Graw Hill

3. Advanced Practical Physical Chemistry J.B.Yadav, Goel Publishing House

4. Advanced Experimental Chemistry. Vol-I J.N.Gurtu and R Kapoor, S.Chand and Co.

5. Experimental Physical Chemistry By V.D.Athawale.

6. Senior Practical Physical Chemistry By: B. D. Khosla, V. C. Garg and A. Gulati, R Chand and Co.. 2011

UNIVERSITY OF MUMBAI

No. UG/730f 2018-19

CIRCULAR:-

Attention of the Principals of the affiliated Colleges and Directors of the recognized Institutions in Science & Technology Faculty is invited to this office Circular Nos. UG/156 of 2016-17, dated 16th November, 2016 relating to syllabus of the Bachelor of Science (B.Sc.) degree course.

They are hereby informed that the recommendations made by the Board of Studies in Chemistry at its meeting held on 28th May, 2018 have been accepted by the Academic Council at its meeting held on 14th June, 2018 <u>vide</u> item No. 4.41 and that in accordance therewith, the revised syllabus as per the (CBCS) for the Chemistry of T.Y.B.Sc. Physical Chemistry, Inorganic Chemistry, Organic Chemistry and Analytical Chemistry (Sem - V & VI) (3 and 6 Units) including Applied Component Drugs and Dyes, Heavy Fine Chemicals and Petrochemicals has been brought into force with effect from the academic year 2018-19, accordingly. (The same is available on the University's website <u>www.mu.ac.in</u>).

ullan

(Dr. Dinesh Kamble) I/c REGISTRAR

MUMBAI - 400 032 6th June, 2018 To July

The Principals of the affiliated Colleges & Directors of the recognized Institutions in Science & Technology Faculty. (Circular No. UG/334 of 2017-18 dated 9th January, 2018.)

A.C./4.41/14/06/2018

No. UG/ 73-A of 2018

MUMBAI-400 032

th June, 2018 July

Copy forwarded with Compliments for information to:-

- 1) The I/c Dean, Faculty of Science & Technology,
- 2) The Chairman, Board of Studies in Chemistry,
- 3) The Director, Board of Examinations and Evaluation,
- 4) The Director, Board of Students Development,
- 5) The Co-Ordinator, University Computerization Centre,

unden

(Dr. Dinesh Kamble) I/c REGISTRAR

T.Y.B.Sc, CHEMISTRY (Six Units)

SEMESTER V

ORGANIC CHEMISTRY

COURSE CODE: USCH503

CREDITS: 02

LECTURES: 60

Unit I

1.1 Mechanism of organic reactions

- 1.1.1 The basic terms & concepts: bond fission, reaction intermediates, electrophiles & nucleophiles, ligand, base, electrophilicity vs. acidity & nucleophilicity vs basicity.
- 1.1.2 Neighbouring group participation in nucleophilic substitution reactions: participation of lone pair of electrons, kinetics and stereochemical outcome.
- 1.1.3 Acyl nucleophilic substitution (Tetrahedral mechanism): Acid catalyzed esterification of carboxylic acids (A_{AC}) and base promoted hydrolysis of esters (B_{AC} 2).
- 1.1.4 Pericyclic reactions, classification and nomenclature
- 1.1.4.1 Electro cyclic reactions (ring opening and ring closing), cycloaddition, sigma tropicRearrangement, group transfer reactions, cheletropic reaction (definition and one example of each type)
- 1.1.4.2 Pyrolytic elimination: Cope, Chugaev, pyrolysis of acetates

References:

- A guidebook to mechanism in Organic Chemistry, 6th edition, Peter Sykes, Pearson education, New Delhi
- 2. Organic Reaction Mechanism, 4th edition, V. K. Ahluwalia, R. K. Parashar, Narosa Publication.
- 3. Organic reactions & their mechanisms,3rd revised edition, P.S. Kalsi, New Age International Publishers.
- 4. M.B.Smith and J. March, Advanced organic chemistry- reactions mechanism and structure, 5th edition.

1.2 Photochemistry

- 1.2.1 Introduction: Difference between thermal and photochemical reactions. Jablonski diagram, singlet and triplet states, allowed and forbidden transitions, fate of excited molecules, photosensitization.
- 1.2.2 Photochemical reactions of olefins: photoisomerization, photochemical rearrangement of 1,4dienes (di- π methane)
- 1.2.3 Photochemistry of carbonyl compounds: Norrish I, Norrish II cleavages. Photo reduction (e.g. benzophenone to benzpinacol)

References:

- 1. Organic Chemistry, 7th Edition, R.T. Morrison, R. N. Boyd & S. K. Bhattacharjee, Pearson.
- 2. Organic chemistry,8th edition, John Mc Murry

Unit II

2.1 Stereochemistry I

2.1.1 Molecular chirality and elements of symmetry: Mirror plane symmetry, inversion center, roation -reflection (alternating) axis.

(5 L)

(5 L)

(10 L)

References:

- 1. L. Eliel, stereochemistry of carbon compounds, Tata McGraw Hill
- 2. Stereochemistry P.S.Kalsi , New Age International Ltd.,4th Edition
- 3. Stereochemistry by Nassipuri.

2.2 Agrochemicals

2.2.1 General introduction & scope, meaning & examples of insecticides, herbicides, fungicide, rodenticide, pesticides, plant growth regulators.

- 2.2.2 Advantages & disadvantages of agrochemicals
- 2.2.3 Synthesis & application of IAA (Indole Acetic Acid) & Endosulphan,
- 2.2.4 Bio pesticides Neem oil & Karanj oil.

References:

- 1. Insecticides & pesticides: Saxena A. B., Anmol publication.
- 2. Growth regulators in Agriculture & Horticulture: Amarjit Basra, CRC press 2000.
- 3. Agrochemicals and pesticides: A.Jadhav and T.V.Sathe.

2.3 Heterocyclic chemistry:

- 2.3.1 Reactivity of pyridine-N-oxide, quinoline and iso-quionoline.
- 2.3.2 Preparation of pyridine-N-oxide, quinoline (Skraup synthesis) and iso-quinoline (Bischler-Napieralski synthesis).
- 2.3.3 Reactions of pyridine-N-oxide: halogenation, nitration and reaction with NaNH₂/liq.NH₃, n-BuLi.
- 2.3.4 Reactions of quinoline and isoquinoline; oxidation,reduction,nitration,halogenation and reaction with NaNH₂/liq.NH₃,n-BuLi.

References

- 1. Name Reactions in Heterocyclic Chemistry, Jie-Jack Li, Wiley-Interscience publications, 2005.
- 2. Handbook of Heterocyclic Chemistry, 2nd Edition, Alan R. Katritzky and Alexander F. Pozharskii, Elsevier Science Ltd, 2000.
- 3. Heterocyclic Chemistry, 5th Edition, John A. Joule and Keith Mills, Wiley publication, 2010.
- 4. Heterocyclic chemistry, 3rd Edition, Thomas L. Gilchrist, Pearson Education, 2007.

Unit III

3.1 IUPAC

IUPAC Systematic nomenclature of the following classes of compounds (including compounds upto two substituents / functional groups):

- 3.1.1 Bicyclic compounds spiro, fused and bridged (upto 11 carbon atoms) saturated and unsaturated compounds.
- 3.1.2 Biphenyls
- 3.1.3 Cummulenes with upto 3 double bonds
- 3.1.4 Quinolines and isoquinolines

References

(4 L)

(6 L)

(5 L)

- 1. Nomenclature of Organic Chemistry: IUPAC recommendations and preferred Names 2013, RSC publication.
- 2. IUPAC nomenclature by S.C.Pal.

3.2 Synthesis of organic compounds

- 3.2.1 Introduction: Linear and convergent synthesis, criteria for an ideal synthesis, concept of chemo selectivity and regioselectivity with examples, calculation of yields.
- 3.2.2 Multicomponent Synthesis: Mannich reaction and Biginelli reaction. Synthesis with examples (no mechanism)
- 3.2.3 Green chemistry and synthesis: Introduction: Twelve principles of green chemistry, concept of atom economy and E-factor, calculations and their significance, numerical examples.
 - i) Green reagents: dimethyl carbonate.
 - ii) Green starting materials : D-glucose
 - iii) Green solvents : supercritical CO₂
 - iv) Green catalysts: Bio catalysts.
- 3.2.4 Planning of organic synthesis
 - i) synthesis of nitroanilines. (*o&p*)
 - ii) synthesis of halobenzoic acid.(*o&p*)
 - iii) Alcohols (primary / secondary / tertiary) using Grignard reagents.
 - iv) Alkanes (using organo lithium compounds)

Reference:

- 1. Green chemistry an introductory text : Mike Lancaster.
- 2. Green chemistry: V. K. Ahluwalia (Narosa publishing house pvt. ltd.)
- 3. Green chemistry an introductory text : RSC publishing.
- 4. New trends in green chemistry V. K. Ahluwalia , M. Kidwai, Klumer Academic publisher
- 5. Green chemistry by V. Kumar.
- 6. Organic chemistry: Francis Carey
- 7. Organic chemistry: Carey and Sundberg.

Unit IV

4.1 Spectroscopy I

- 4.1.1 Introduction: Electromagnetic spectrum, units of wavelength and frequency
- 4.1.2 UV Visible spectroscopy: Basic theory, solvents, nature of UV-Visible spectrum, concept of chromophore, auxochrome, bathochromic and hypsochromic shifts, hyperchromic and hypochromic effects, chromophore-chromophore and chromophore-auxochrome interactions.
- 4.1.3 Mass spectrometry: Basic theory. Nature of mass spectrum. General rules of fragmentation. Importance of molecular ion peak, isotopic peaks, base peak, nitrogen rule, rule of 13 for determination of empirical formula and molecular formula. Fragmentation of alkanes and aliphatic carbonyl compounds.

References:

- 1. Organic spectroscopy (Second edition), Jag Mohan, Narosa publication
- 2. Spectroscopy, Pavia, Lampman, Kriz, Vyvyan.

(10L)

(5 L)

- 3. Elementary organic spectroscopy (Third edition), Y.R.Sharma, S.Chand publication..
- 4. Introduction to spectroscopy (third edition), Pavia ,Lampman,Kriz,john vondeling,Emily Barrosse.
- 5. Organic chemistry Paula Y. Bruice, Pearson education.
- 6. Spectral identification of organic molecules by Silverstein.
- 7. Absorption spectroscopy of organic molecules by V.M.Parikh.

4.2 Natural Products:

4.2.1. Terpenoids: Introduction, Isoprene rule, special isoprene rule and the gem-dialkyl rule.

- 4.2.2 Citral:
 - a) Structural determination of citral.
 - b) Synthesis of citral from methyl heptenone
 - c) Isomerism in citral. (cis and trans form).
- 4.2.3. Alkaloids Introduction and occurrence.

Hofmann's exhaustive methylation and degradation in: simple open chain and N – substituted monocyclic amines.

- 4.2.4 Nicotine:
 - a) Structural determination of nicotine. (Pinner's work included)
 - b) Synthesis of nicotine from nicotinic acid
 - c) Harmful effects of nicotine.
- 4.2.5 Hormones:

Introduction, structure of adrenaline (epinephrine), physiological action of adrenaline. Synthesis of adrenaline from

- a) Catechol
- b) p-hydroxybenzaldehyde(Ott's synthesis)

References:

- 1. Chemistry of natural products by Chatwal Anand Vol I and Vol II
- 2. Chemistry of natural products by O.P. Agarwal
- 3. Chemistry of natural products by Meenakshi Sivakumar and Sujata Bhat.
- 4. Organic chemistry by Morrision and Boyd,7th edition.
- 5. I.L.Finar, Vol-I and Vol-II, 5th edition.

PRACTICALS

SEMESTER V

ORGANIC CHEMISTRY

COURSE CODE: USCHP09

CREDITS: 02

- A) SEMESTER V: Separation of Binary solid-solid mixture (2.0 gms mixture to be given).
- 1. Minimum Six mixtures to be completed by the students.
- 2. Components of the mixture should include water soluble and water insoluble acids (carboxylic acid), water insoluble phenols(2-naphthol, 1-naphthol), water insoluble bases

(10L)

(nitroanilines), water soluble neutral (thiourea) and water insoluble neutral compounds (anilides, amides, m-DNB, hydrocarbons)

After correct determination of chemical type, the separating reagent should be decided by the student for separation.

4. Follow separation scheme with the bulk sample of binary mixture.

5. After separation into component A and component B, one component (decided by the examiner) is to be analyzed and identified with m.p..

References:

- 1. Practical organic chemistry A. I. Vogel
- 2. Practical organic chemistry H.Middleton.
- 3. Practical organic chemistry O.P.Aggarwal.

SEMESTER VI

ORGANIC CHEMISTRY

COURSE CODE: USCH603

CREDITS: 02

LECTURES: 60

(10 L)

Unit I

1.1 Stereochemistry II

- 1.1.1 Stereoselectivity and stereospecificity: Idea of enantioselectivity (ee) and diastereoselectivity (de), Topicity : enantiotopic and diasterotopic atoms, groups and faces.
- 1.1.2 Stereochemistry of
 - i) Substitution reactions : S_{Ni} (reaction of alcohol with thionyl chloride)
 - ii) Elimination reactions: E₂–Base induced dehydrohalogenation of 1-bromo-1,2diphenylpropane.
 - iii) Addition reactions to olefins:
 - a) bromination (electrophilic anti addition)
 - b) syn hydroxylation with O_sO_4 and $KMnO_4$
 - c) epoxidation followed by hydrolysis.

References:

Refer Stereochemistry –I (Sem-V, Unit-II)

1.2 Amino acids & Proteins

- **1.2.1** α-Amino acids: General Structure, configuration, and classification based on structure and nutrition. Properties: pH dependency of ionic structure, isoelectric point and zwitter ion. Methods of preparations: Strecker synthesis, Gabriel phthalamide synthesis.
 - **1.2.2** Polypeptides and Proteins: nature of peptide bond. Nomenclature and representation of polypeptides (di-and tri-peptides) with examples Merrifield solid phase polypeptide synthesis. Protiens:general idea of primary,secondary,tertiary & quaternary structure

(5 L)

References:

- 1. Biochemistry, 8th Ed., Jeremy Berg, Lubert Stryer, John L. Tymoczko, Gregory J. Gatto Pub. W. H. Freeman Publishers
- 2. Lehninger Principles of Biochemistry 7th Ed., David Nelson and Michael Cox, Publisher W. H. Freeman
- 3. Name Reactions Jie Jack Li, 4th Edition, Springer Pub.

Unit II

2.1 Molecular Rearrangements

Mechanism of the following rearrangements with examples and stereochemistry wherever applicable.

- Migration to the electron deficient carbon: Pinacol-pinacolone rearrangement. 2.1.1
- 2.1.2 Migration to the electron deficient nitrogen: Beckmann rearrangement.
- 2.1.3 Migration involving a carbanion : Favorski rearrangement.
- 2.1.4 Name reactions: Michael addition, Wittig reaction.

References:

Refer Mechanism of organic reaction (Sem-V, Unit-I)

2.2 Carbohydrates

- 2.2.1 Introduction: classification, reducing and non-reducing sugars, DL notation
- Structures of monosaccharides: Fischer projection (4-6 carbon monosaccharides) 2.2.2 and Haworth formula (furanose and pyranose forms of pentoses and hexoses) Interconversion: open chain and Haworth forms of monosaccharides with 5 and 6 carbons. Chair conformation with stereochemistry of D-glucose, Stability of chair form of D-glucose
- 2.2.3 Stereoisomers of D-glucose: enantiomer, diastereomers, anomers, epimers.
- 2.2.4 Mutarotation in D-glucose with mechanism
- 2.2.5 Chain lengthening & shortening reactions: Modified Kiliani-Fischer synthesis (D-arabinose to D-glucose and D-mannose), Wohl method (D-glucose to D-arabinose)
- 2.2.6 Reactions of D-glucose and D-fructose:
 - (a) Osazone formation (b) reduction: Hi/Ni, NaBH₄ (c) oxidation: bromine water, HNO₃, HIO₄ (d) acetylation (e) methylation:(d) and (e) with cyclic pyranose forms
- 2.2.7 Glycosides: general structure

References:

- 1. Organic chemistry (fourth edition), G, Marc Loudon, Oxford University press.
- 2. Introduction to Organic Chemistry (Third edition), Andrew Streitwieser, Jr. Clayton H. Heathcock, Macmilan publishing.
- 3. Organic chemistry fourth edition, Morrision and Boyd.
- 4. Introduction to Organic chemistry, John McMurry.
- 5. Organic chemistry volume-1&2 (fifth and sixth edition) IL Finar.

Unit III

3.1 Spectroscopy II

- **3.1.1** IR Spectroscopy: Basic theory, nature of IR spectrum, selection rule, fingerprint region.
- **3.1.2** PMR Spectroscopy: Basic theory of PMR, nature of PMR spectrum, chemical shift (δ unit), standard for PMR, solvents used. Factors affecting chemical shift: (1) inductive effect (2) anisotropic effect (with reference to C=C, C=C, C=O and benzene ring). Spin- spin coupling and

(10 L)

(10 L)

(5 L)

coupling constant. application of deuterium exchange technique. application of PMR in structure determination.

3.1.3 Spectral characteristics of following classes of organic compounds, including benzene and monosubstituted benzenes, with respect to IR and PMR: (1) alkanes (2) alkenes (3) alkynes (4) haloalkanes (5) alcohols (6) carbonyl compounds (7) ethers (8) amines (broad regions characteristic of different groups are expected).

Problems of structure elucidation of simple organic compounds using individual or combined use of UV-Vis, IR, Mass and NMR spectroscopic technique are expected. (Index of hydrogen deficiency should be the first step in solving the problems).

References:

Refer spectroscopy –I, (Sem-V, Unit-IV)

3.2 Nucleic Acids

Controlled hydrolysis of nucleic acids. sugars and bases in nucleic acids. Structures of nucleosides and nucleotides in DNA and RNA. Structures of nucleic acids (DNA and RNA) including base pairing.

References:

- 1. Organic chemistry R.T.Morrison and R.N.Boyd, 6th edition, pearson education
- 2. S.H.Pine, organic chemistry 4th edition. McGraw Hill

Unit IV

4.1 Polymer

- 4.1.1 Introduction: terms monomer, polymer, homopolymer, copolymer, thermo plastics and thermosets.
- 4.1.2 Addition polymers: polyethylene, polypropylene, teflon, polystyrene, PVC, Uses.
- 4.1.3 Condensation polymers: polyesters, polyamides, polyurethanes, polycarbonates, phenol formaldehyde resins.Uses
- 4.1.4 Stereochemistry of polymers: Tacticity, mechanism of stereochemical control of polymerization using Ziegler Natta catalysts.
- 4.1.5 Natural and synthetic rubbers: Polymerisation of isoprene: 1,2 and 1,4 addition (cis and trans), Styrene butadiene copolymer.
- 4.1.6 Additives to polymers: Plasticisers, stabilizers and fillers.
- 4.1.7 Biodegradable polymers: Classification and uses. polylactic acid structure, properties and use for packaging and medical purposes.

(Note : Identification of monomer in a given polymer & structure of polymer for a given monomer is expected. condition for polymerization is not expected)

References:

- 1. Polymer chemistry by M.G.Arora, K.Singh.
- 2. Polymer science a text book by Ahluwalia and Mishra
- 3. Introduction to polymer chemistry R.Seymour, Wiley Interscience.

4.2 Catalysts and Reagents

Study of the following catalysts and reagents with respect to functional group transformations and selectivity (no mechanism).

- **4.2.1** Catalysts: Catalysts for hydrogenation:
 - a. Raney Nickel

(5 L)

(8 L)

- b. Pt and PtO₂ (C=C, CN, NO₂, aromatic ring)
- c. $Pd/C : C=C, COCl \rightarrow CHO$ (Rosenmund)
- d. Lindlar catalyst: alkynes

d.2.2 Reagents:

- a. LiAlH₄ (reduction of CO, COOR, CN,NO₂)
- b. NaBH₄ (reduction of CO)
- c. SeO_2 (Oxidation of CH_2 alpha to CO)
- d. mCPBA (epoxidation of C=C)
- e. NBS (allylic and benzylic bromination)

References:

- 1. Organic chemistry by Francis Carey McGrawHill .
- 2. Oranic chemistry by Carey and Sundberg, Part A & B

PRACTICALS

SEMESTER VI

ORGANIC CHEMISTRY

COURSE CODE: USCHP10

CREDITS: 02

- A) **SEMESTER VI:** Separation of Binary liquid-liquid and liquid- solid mixture.
- 1. Minimum Six mixtures to be completed by the students.
- 2. Components of the liq-liq mixture should include volatile liquids like acetone, methylacetate, ethylacetate, isopropylalcohol, ethyl alcohol, EMK and non volatile liquids like chlorobenzene, bromobenzene, aniline, N,N dimethylaniline, acetophenone, nitrobenzene, ethyl benzoate.
- 3. Components of the liq- solid mixture should include volatile liquids like acetone, methylacetate, ethylacetate, ethyl alcohol, IPA, EMK and solids such as water insoluble acids, phenols, bases, neutral.
- 4. A sample of the mixture one ml to be given to the student for detection of the physical type of the mixture.
- 5. After correct determination of physical type, separation of the binary mixture to be carried out by distillation method using microscale technique.
- 6. After separation into component A and component B, the compound to be identified can be decided by examiner.

References:

- 4. Practical organic chemistry A. I. Vogel
- 5. Practical organic chemistry H.Middleton.
- 6. Practical organic chemistry O.P.Aggarwal.

CIRCULAR:-

A reference is invited to the Syllabi relating to the B.Sc. degree course, vide this office Circular No. UG/98 of 2015-16, dated 13th October, 2016 and the Principals of affiliated Colleges in Science are hereby informed that the recommendation made by the Ad-hoc Board of Studies in Chemistry at its meeting held on 7th July, 2016 has been accepted by the Academic Council meeting held on 14th July, 2016 vide item No. 4.13 and that in accordance therewith, the revised syllabus as per the Choice Based Credit System for T.Y. B.Sc. programme in Chemistry (Sem. V & VI), which are available on the University's web site (www.mu.ac.in) and that the same has been brought into force with effect from the academic year 2016-17.

MUMBAI - 400 032 16 November, 2016

To,

The Principals of the affiliated Colleges in Science.

A.C/4.13/14.07.2016

No. UG// SEA of 2016

MUMBAI-400 032

16 November, 2016

Copy forwarded with Compliments for information to:-

1) The Co-ordinator, Faculties of Science,

2) The Chairman, Board of Studies in Chemistry,

3) The Professor-cum-Director, Institute of Distance & Open Learning (IDOL) The Director, Board of College and University Development, 4) 5) The Co-Ordinator, University Computerization Centre, 6) The Controller of Examinations.

(Dr.M.A.Khan)

REGISTRAR

PTO..

UNIVERSITY OF MUMBAI

Syllabus for sem V & VI Program: B.Sc. Course: CHEMISTRY

(Credit Based Semester and Grading System with effect from the academic year 2016–2017)

T.Y.B.Sc.

CHEMISTRY Credit Based Semester and Grading System To be implemented from the Academic year 2016-2017

SEMESTER V

Theory

Course	UNIT	TOPICS	Credits	L / Week
USCH501	Ι	 1.1 Colligative Properties of Dilute Solutions (8L) 1.1.1 Dilute solution, colligate properties, Raoult's law, relative lowering of vapour pressure. 1.1.2 Elevation in boiling point of a solution, thermodynamic derivation relating elevation in the boiling point of a solution and the molar mass of the non-volatile solute. 1.1.3 Depression in freezing point of a solution, thermodynamic derivation relating the depression in the freezing point of a solution and the molar mass of the non-volatile solute. 1.1.4 Osmotic pressure, van't Hoff's equation for osmotic pressure, (derivation is expected) and determination of molar mass of the solute. Abnormal molar masses of solutes and van't Hoff factor (calculation of Degree of Association and Degree of Dissociation.) 1.2 Phase Rule (7L) 1.2.1 Gibb's phase rule and terms involved in the equation. 1.2.2 Application of phase rule to ONE component systems (i) water system, (ii) sulphur system 1.2.3 Application of phase rule to TWO component systems, condensed systems, condensed phase rule, eutectic systems (Lead-Silver system), desilverisation of lead. 1.2.4 Introduction to three component system, explanation of phase diagram for three liquids forming one immiscible pair. 	2.5	1

	2.1 Surface Chemistry & Catalysis	
	(9L)	
	2.1.1 Adsorption: Physical and	
	Chemical Adsorption, types of	
	adsorption isotherms. Langmuir's	
	adsorption isotherm (Postulates and	
	derivation expected) B E T equation	
	for multilayer adsorption (derivation	
	not expected) significance of the terms	
	involved in the equation is	
	expected.).determination of surface	
	area of an adsorbent using B E T	
	equation. Numericals on surface area	
	determination are expected	
	2.1.2 Catalysis: Homogeneous and	
	heterogeneous catalysis, catalytic	
	activity and selectivity, promoters	
	inhibitors catalyst poisoning and	
	deactivation	
	2.1.3 Acid-Base catalysis, mechanism	
П	and kinetics of acid-base catalyzed	
	reactions, effect of pH on acid-base	
	catalyzed reactions. Mechanism and	
	kinetics of enzyme catalyzed reaction	
	(Michaelis-Menten equation).	
	2.2 Colloids (6L)	
	2.2.1 Introduction to colloidal state of	
	matter.	
	2.2.2 Origin of charge on colloidal	
	particles. Concept of electrical double	
	laver zeta potential Helmholtz and	
	Stern model, Electro-kinetic	
	phenomena:1.Electrophoresis.	
	2.Electrophoresis	
	3 Streaming potential	
	A Sedimentation potential	
	Soumontation potential.	
	2.2.5 Colloidal electrolytes.	
	2.2.4 Domian Memorane Equinorium.	
	2.2.5 Suffactants, incene formation,	
	detergents food industry in pesticide	
	formulations	
	3.1 Electrochemistry –	
	Electrochemical cells (15L)	
	3.1.1 Lewis concept of Activity and	
	Activity coefficient. Mean ionic	
	activity and mean ionic activity	
III	coefficient γ_{+-} of an electrolyte.	
	expression for activities of electrolytes	
	of different valence type, ionic strength	

		3.1.2 Classification of cells: 1.chemical		
		cells without transference		
		2.Concentration cells with and without		
		transference (derivations of		
		expression for concentration cell EMF		
		are expected) Origin of liquid-liquid		
		junction potential and its elimination		
		using a salt bridge.		
		3.1.3 Applications of EMF		
		.measurements in the determination		
		of 1. pH of a solution using		
		quinhydrone and glass electrode. 2		
		solubility and solubility product of		
		sparingly soluble salts using chemical		
		cell and concentration cell method 3 .		
		determination of liquid-liquid junction		
		potential.		
ľ		4.1 Introduction to Polymers (8L)	-	
		4.1.1 Basic terms : macromolecule,		
		monomer, repeat unit, degree of		
		polymerization.		
		4.1.2. Classification of polymers		
		based on (i) source, (ii) structure, (iii)		
		thermal response, (iv) physical		
		properties.		
		4.1.3. Molar masses of polymers: 1.		
		Number average molar mass, 2.Weight		
		average molar mass, 3. Viscosity		
		average molar mass, monodispersity,		
		polydispersity.		
		4.1.4. Methods of determining molar		
		masses of polymers : 1. Ultrcentrifuge		
		method (Limiting velocity method		
	TX 7	only). Viscosity method (Mark-		1
	1 V	Houwink equation).		1
		4.1.5. Introduction to light emmiting		
		polymers (characteristics, method of		
		preparation and it's application are		
		expected).		
		4.2 Crystalline State (7L)		
		4.2.1. Laws of Crystallography		
		4.2.2 . Characteristics of simple cubic,		
		face centered and body centered cubic		
		system, inter planar distance in cubic		
		inter player distances (only expressions for ratios of		
		inter planar distances are expected).		
		4.4.3. Use of A-rays in the study of		
		derivation expected) V result fraction		
		method of studying systel lettings		
		method of studying crystal lattices,		
		structure of NaCl and KCl,		

		determination of Avagadro number.		
		4.2.4. Elementary idea of defects in		
		crystals- Frenkel defect and Schottky		
		defect.		
		1. Chemical Bonding And Solid State		
		Chemistry (15L)		
		1.1 Molecular Symmetry (7L)		
		1.1.1 Introduction and Importance.		
		1.1.2 Symmetry elements and		
		symmetry operations.		
		1.1.3 Concept of a Point Group with		
		illustrations using the following point		
		gro ups: (i) $C_{\alpha v}$ (HCl), (ii) $D_{\alpha h}$ (H2),		
USCH502	Ι	(iii) C2v (H2O), (iv) C3v (NH3), (v) C2h	2.5	1
		(trans – trichloroethylene), and (vi) D _{3h}		
		(BCl ₃).		
		1.2 Molecular Orbital Theory for		
		Polyatomic Species (5L)		
		1.2.1 Simple triatomic species: H_3^+ and		
		H ₃ (correlation between bond angle and		
		Molecular orbitals).		
		Term such as Walsh correlation diagram,		
		Symmetry Adapted Linear Combinations		
		(SALCs), Ligand Group orbitals (LGOs),		
		transformation of atomic orbitals into		
		discussed		
		1.5 (<i>SL</i>) Other molecules (considering		
		only c-bonding); i) BeH2, ii) H2O		
		Explanation of terms viz crystal		
		lattice lattice points unit cells and		
		lattice constants.		
		lattice constants.		

	2. Solid Materials (15L)		
	2.1 Structures of Solids (10L)		
	2.1.1 Importance of solid state		
	chemistry.		
	2.1.2 Classification of solids on the		
	basis of bonding.		
	2.1.3 Closest packing of rigid spheres		
	(hcp_ccp) packing density in simple		
	cubic, bcc, fcc and hcp lattices		
	(numerical problems expected).		
	Point defects with respect to Frenkel		
	and Schottky defects expected		
	2 1 4 Structure metallic solids		
	2.1.4 Structure metallic solids.		
	2.1.5 Tetraneurar and Octaneurar		
	interstitiat voids in cep fattice,		
	tetranedral noies, infitting radius		
	ratios		_
П	for different coordination numbers and		1
	their significance, calculation of		
	limiting radius ratio for coordination		
	number 4.		
	2.1.7 Structures of sodium chloride and		
	cesium chloride.		
	2.2 Superconductivity (05L)		
	2.2.1 Superconductivity, Meissner		
	effect.		
	2.2.2 Different superconducting		
	materials viz convential		
	superconductors, organia		
	superconductors, organic		
	superconductors, alkali metal fullerides		
	(A ₃ C ₆₀) and high temperature		
	Superconductors.		
	2.2.3 Applications of superconducting		
	materials		
	3. Chemistry of elements (15L)		
	3.1 Inner transition elements (3L)		
	3.1.1 Introduction: position of f-block		
	elements and comparison between		
	lanthanides and actinides		
	3.1.2 The shapes of <i>f</i> -orbitals.		
	3.1 Lanthanides Series (10L)		
TTT			1
111	3.2.1 Chemistry of lanthanides with		
	(ii) Oxidation states (iii) magnetic and		
	spectral properties,		
	3.2.2 Occurrence, extraction and		
	separation of lanthanides by Solvent		
	extraction		
	2 2 2 Applications of lasthand last		
	3.2.3 Applications of lanthanides.	l	

		3.3 Actinidas Sarias (21)		
		2.2.1 Chamistry of Unanium and with		
		5.3.1 Chemistry of Oranium and with		
		reference to occurrence, extraction		
		(solvent extraction method),		
		3.3.2 Properties and applications.		
		4. Solution Chemistry		
		4.1 Acid-base Chemistry in Aqueous		
		Medium (8L)		
		4.1.1 Acidity of mono- and polyatomic		
		cations.		
		4.1.2 Basicity of mono- and polyatomic		
		anions (discussion for 4.1.1 as well as		
		4.1.2 to Include Latimer equation and		
		predominance diagrams).		
	IV	4.2 Chemistry in Non-aqueous		1
		Solvents (7L)		
		4.2.1 Classification of solvents and		
		importance of non-aqueous solvents		
		4.2.2 Characteristics and study of		
		liquid ammonia dinitrogen tetraoxide		
		and acetic acid as non-aqueous		
		solvents with respect to (i) acid base		
		solvents with respect to (1) acid-base		
		Teactions and (ii) redox Teactions.		
		1.1. Mechanism of Organic		
		Reactions (15L)		
		1.1.1 Thermodynamic and Kinetic		
		control of organic reactions: Concept		
		with mechanisms of the following		
		reactions: addition of HX to butadiene;		
		sulfonation of naphthalene.		
		Nucleophilicity/ electrophilicity vs		
		Basicity/acidity.		
		1.1.2 Mechanism of elimination		
		reactions, with stereochemistry: E1 and		
		E2 reactions: regioselectivity (Saytzeff		
		and Hofmann rules).		
	т	1.1.3 Mechanism of reactions of	25	1
05011505	I	carbonyl compounds with	2.3	I
		nucleophiles: 1.1.3.1 Formation of		
		acetals/ketals from aldehydes and		
		ketones. 1.1.3.2 Reaction of aldehydes		
		and ketones with primary and		
		secondary amines. 1.1.3.3 Acyl		
		nucleophilic substitution (tetrahedral		
		mechanism): Acid catalysed		
		esterification of Carboxylic acids and		
		base promoted hydrolysis of esters.		
		1.1.4 Mechanism of rearrangements		
		with examples and stereochemistry		
		wherever applicable. 1.1.4.1 Migration		
		to electron deficient carbon: Pinacol,		

		Benzylic acid. 1.1.4.2 Migration to	
		electron deficient nitrogen: Beckmann,	
		Hofmann.	
		1.1.5 Mechanism of the following	
		reactons with synthetic application:	
		Claisen condensation. Michael	
		addition.	
		2. Stereochemistry (15L)	
		2.1.1 Molecular chirality and element	
		of symmetry: Mirror Plane symmetry	
		(inversion centre) rotation-reflection	
		(alternating) axis Chirality of	
		compounds without stereogenic	
		centre: cummulenes spirans and	
		binhenvls	
		2.1.2 Stability of eveloalkanes: Strains	
		in eveloalkanes, angle aclinising	
		transannular (3 to 8 membered)	
		Conformations of avalabayana mono	
		contormations of cyclonexane, mono-	
		and ui- arkyr cyclonexanes and then	
		2 1 2 Stores calestivity and Stores	
	Π	2.1.5 Stereo selectivity and Stereo	1
		specificity: Idea of enantioselectivity	
		(ee) and diastereoselectivity	
		(de). I opicity-enantiotopic and	
		diastereotopic atoms, groups and faces.	
		Stereochemistry of-	
		(1) Substitution reactions- SN1, SN2,	
		SN1 (reaction of alcohol with thionyl	
		chloride). (2) E2-anti-elimination-Base	
		induced dehydrohalogenation of 1-	
		bromo-1,2- diphenylpropane.	
		(3) Addition reactions to olefins-1)	
		catalytic hydrogenation 11) bromination	
		(electrophilic anti addition) (iii)syn-	
		hydroxylation (molecular addition)	
		with OsO4 and KMnO4.	
		3.1 Carbohydrates (10L)	
		3.1.1 Introduction: Classification,	
		Sources, Reducing and non-reducing	
		sugars DL notation.	
		3.1.2 Structures of monosaccharides:	
		Fischer projection (4-6 carbon	
	III	monosaccharides and Haworth	1
		formula-Furanose and pyranose forms	_
		of pentoses and hexoses.	
		Interconversion :open and Haworth	
		torms of monosaccharides with 5 and	
		6 carbons. Chair conformation with	
		stereochemistry of D-glucose and D-	
		fructose. Stability of chair forms of D-	

	glucose.	
	3.1.3 Determination of open chain	
	configuration- of D-glucose assuming	
	the configuration of D-arabinose; and	
	of D-fructose assuming the	
	configuration of D-glucose.	
	3.1.4 Anomers and epimers of	
	monosaccharides. Enantiomers and	
	diastereomers of glucose. Mutarotation	
	(with mechanism) in D-glucose.	
	3.1.5 Chain lengthening and shortening	
	reaction: Modified kiliani-fischer	
	synthesis. Wohl method.	
	3.1.6 Reactions of D-glucose and D-	
	fructose: (a) osazone formation (b)	
	reduction- H2/Ni, NaBH4 c)oxidation-	
	bromine water, HNO3, HIO4. D)	
	interconversion of D-glucose	
	and D-fructose e) acetylation f)	
	methylation [e and f with cyclic	
	pyranose form].	
	3.1.7 Commercial importance of	
	carbohydrates in pharmaceutical,	
	paper, food and Textile industries.	
	3.2. IUPAC Nomenclature (5L)	
	IUPAC systematic and accepted trivial	
	nomenclature of the following classes	
	of compounds, including substituted	
	ones (up to 2 substituents/ functional	
	groups):	
	3.2.1 (a)Bicyclic compounds- spiro-	
	, fused, and bridged (upto 11 carbon	
	atoms)-saturated and unsaturated	
	compounds. 222 (b) Disk and 2	
	3.2.2 (b) Bipnenyls.	
	3.2.3 (c) Cummulenes upto 3 double	
	bonus (d) Monocyclic (5 and 6	
	hemoered) aromatic and non-aromatic	
	neterocyclic compounds containing a	
	$M \propto S$	
	N, U, S. 3.1.1 Introduction: Classification	
	Sources Deducing and non-reducing	
	sugars DL notation	
	312 Structures of monosaccharides:	
	Fischer projection $(A_{-} 6 \text{ carbon})$	
	monosaccharides and Haworth	
	formula-Furanose and pyranose forms	
	of pentoses and hexoses	
	Interconversion open and Haworth	
	forms of monosaccharides with 5 and	
	6 carbons. Chair conformation with	
	o caroono, chan comornation with	

	stereochemistry of D-glucose and D-	
	fructose. Stability of chair forms of D-	
	glucose.	
	3.1.3 Determination of open chain	
	configuration- of D-glucose assuming	
	the configuration of D-arabinose; and	
	of D-fructose assuming the	
	configuration of D-glucose.	
	3.1.4 Anomers and epimers of	
	monosaccharides. Enantiomers and	
	diastereomers glucose. Mutarotation	
	(with mechanism) in D-glucose.	
	3.1.5 Chain lengthening and shortening	
	reaction: Modified kiliani-fischer	
	synthesis. Wohl method.	
	3.1.6 Reactions of D-glucose and D-	
	fructose: (a) osazone formation (b)	
	reduction- H2/Ni. NaBH4 c)oxidation-	
	bromine water, HNO ₃ , HIO ₄ , D)	
	interconversion of D-glucose	
	and D-fructose e) acetylation f)	
	methylation [e and f with cyclic	
	pyranose form].	
	3.2. IUPAC Nomenclature (5L)	
	IUPAC systematic and accepted trivial	
	nomenclature of the following classes	
	of compounds, including substituted	
	ones (up to 2 substituents/functional	
	groups):	
	3.2.1 (a)Bicyclic compounds- spiro-	
	,fused, and bridged (upto 11carbon	
	atoms)-saturated and unsaturated	
	compounds.	
	3.2.2 (b) Biphenyls.	
	3.2.3 (c) Cummulenes upto 3 double	
	bonds (d) Monocyclic (5 and 6	
	membered) aromatic and non-aromatic	
	heterocyclic compounds containing a	
	maximum of two hetero	
	atoms among N,O,S.	
	4.1. Heterocyclic Chemistry (8L)	
	4.1.1 Introduction: Electronic structure	
	and aromaticity of furan,	
	pyrrole, thiophene and pyridine.	
	4.1.2 Synthesis: Synthesis of furans,	
IV	pyrroles, and thiophenes by Paal-Knor	1
	synthesis. Pyridines by Hantzsch	
	synthesis and from 1,5-diketones.	
	4.1.3 Reactivity: Reactivity towards	
	electrophilic substitution reactions- of	
	furan, pyrrole and thiophene on basis	

of stability of intermediate; and of	
pyridine on the basis of electron	
distribution.Nucleophilic substitution	
reaction of pyridine on the basis of	
electron distribution.	
4.1.4 Reactions of heterocycles: The	
following reactions of furan, pyrrole	
and thiophene: Halogenation,	
Nitration, Sulphonation, Vilsmeir	
formylation reaction, Friedel-Crafts	
reaction. Furan: Diels-Alder reaction.	
Ring opening of furan. Pyrrole: Acidity	
and basicity of pyrrole -Comparison of	
basicity of pyrrole and	
pyrrolidine. Acid catalyzed	
polymerization of pyrrole. Pyridine:	
Basicity. Comparison of basicity of	
pyridine, pyrrole and piperidine	
Sulphonation of pyridine, with and	
without catalyst Reduction Oxidation	
of alkyl pyridines and action of	
sodamide (Chichibabin reaction) N-	
methylation of pyridine Quaternization	
of piperdine, pyrrolidine and Hofmann	
elimination of the quaternary salts	
4.2. Organic Synthesis (7L)	
4.2.1 Introduction: Criteria for ideal	
organic synthesis Yield and	
selectivity Multi- component synthesis	
– with examples. Mannich reaction	
Hanztsch synthesis of	
pyridines (without mechanism)	
4.2.2 Illustrative synthesis of	
industrially important compounds:	
Ibuprofen (chiral synthesis)	
paracetamol (green synthesis) L-	
ascorbic acid (from D-glucose)	
norfloxacin, thyroxine, vanillin	
methyl dihydrojasmonate (Hedione)	
Bifenox-L pigment red 242, indigo, 2-	
hydroxy-3-amino-5-nitrobenzene	
sulphonic acid	
4.2.3 Newer methods of organic	
synthesis: Introduction to the use of the	
following in organic synthesis:	
Ultrasound, microwaves, PTC	
4.1.1 Introduction: aromaticity of	
furan.pyrrole.thiophene and	
pyridine.	
4.1.2 Synthesis: Synthesis of furans	
pyrroles, and thiophenes by Paal-Knor	
synthesis. Pyridines by Hantzsch	

synthesis and from 1,5-diketones. 4.1.3	
Reactivity: Reactivity towards	
electrophilic substitution reactions- of	
furan, pyrrole and thiophene on basis	
of stability of intermediate; and of	
pyridine on the basis of electron	
distribution. Nucleophilic substitution	
reaction of pyridine on the basis of	
electron distribution.	
4.1.4 Reactions of heterocycles: The	
following reactions of furan, pyrrole	
and thiophene: Vilsmeir formylation	
reaction. Friedel-Crafts reaction.	
Furan: Diels-Alder reaction. Ring	
opening of furan, Pyrrole: Acidity and	
basicity of pyrrole-Comparison of	
basicity of pyrrole and pyrrolidine.	
Acid catalyzed polymerization of	
pyrrole. Pyridine: Basicity.	
Comparison of basicity of pyridine	
pyrrole and piperidine. Sulphonation	
of pyridine, with and without catalyst.	
Reduction.Oxidation of alkyl	
pyridines and action of sodamide	
(Chichibabin reaction). N-methylation	
of pyridine Quaternization of	
piperdine, pyrrolidine and Hofmann	
elimination of the quaternary salts.	
4.2. Organic Synthesis (7L)	
4.2.1 Introduction: Criteria for ideal	
organic synthesis. Yield and	
selectivity. Multi- component	
synthesis – with examples. Mannich	
reaction. Hanztsch synthesis of	
pyridines (without mechanism).	
4.2.2 Illustrative synthesis of	
industrially important compounds:	
Ibuprofen (chiral synthesis).	
paracetamol (green synthesis), L-	
ascorbic acid (from D-glucose).	
norfloxacin, nalidixic acid, vanillin,	
methyl dihydroiasmonate (Hedione).	
Bifenox-I, pigment red 242. 2-	
hydroxy-3-amino-5-nitrobenzene	
sulphonic acid.	
4.2.3 Newer methods of organic	
synthesis: Introduction to the use of	
the following in organic synthesis:	
Ultrasound, microwaves, PTC	

		1. Treatment of analytical data-I and		
		sampling (15 L)		
		1.1 Treatment of Analytical Data		
		(7L)		
		Types of errors, determinate and		
		indeterminate errors, minimization of		
		errors, constant and proportionate		
		errors, accuracy and precision,		
		measures of dispersion and central		
		tendency: mean, median, average		
		deviation, relative average deviation,		
		standard deviation, variance,		
		problems expected		
	Ι	1 2 Sampling (81)		1
		Terms involved importance of		
		sampling sampling techniques		
		sampling of gases, ambient and stack		
		sampling, equipment used, sampling of		
		homogeneous and heterogeneous		
		liquids, sampling of static and flowing		
		liquids, methods and equipments used,		
		sampling of solids, importance of		
		particle size and sample size, samples		
		used, need for the reduction in the		
USCH504		sample size, methods of reduction in	2.5	
		sample size, collection, preservation		
		and dissolution of the sample.		
		2. Titrimetric analysis-I and UV-		
		Visible spectroscopy. (15L)		
		2.1 Acid-base Titrations (5L)		
		Construction of titration curves and		
		choice of indicators in the titration of		
		[1] strong acid and strong base, [2]		
		strong acid and weak base, [3] weak		
		acid and strong base, [4] weak acid and		
		weak base.		
		2.2 Precipitation utrations (4L)		
	Π	of the titration curve. Volhard's		1
		method Mohr's method adsorption		
		indicators theory and applications		
		2 3 U V Visible Spectroscopy (AI)		
		Photometers and spectrophotometers		
		Instrumentation in the case of single		
		and double beam spectrophotometers,		
		Qualitative and quantitative analysis,		
		calibration cure method.		

III	 3. Methods of separation-I (15L) 3.1 Solvent Extraction (8L) Partition coefficient and distribution ratio, extraction efficiency, separation factor, role of complexing agents in solvent extraction, chelation, ion pair formation, solvation, types of solvent extraction: batch, continuous. [Numerical problems expected] 3.2 Chromatography (2L) Introduction to chromatographic techniques, classification of chromatographic techniques. 3.3 Planar Chromatography (5L) Principle, techniques and applications of [1] Paper chromatography [2] Thin layer chromatography 	1
IV	 4. Optical methods (15L) 4.1 Atomic Spectroscopy (7L) Absorption and emission spectra, energy level diagrams, process involved in atomization, flame photometry, flame atomizer, types of burners, monochromators and detectors, atomic absorption spectroscopy; flame and electrothermal atomizer, sources, instrumentation, quantitative applications of atomic absorption and flame photometry, calibration curve method, standard addition and internal standard method. 4.2 Molecular Fluorescence and Phosphorescence Spectroscopy (4L) Theory, instrumentation and applications 4.3 Turbidimetry and Nephelometry (4L) Scattering of light, effect of concentration, particle size and wavelength on light scattering, instrumentation and applications. 	1

Practicals

	Practicals of Course USCH501		
	Physical Practicals		
	Chemical Kinetics –		
	To determine the order between K ₂ S ₂ O ₈ & KI		
	by fractional change method.		
	Viscosity –		
	To determine the molecular weight of high		
	polymer polyvinyl alcohol (PVA) by		
	viscosity measurement.		
	OR		
	To determine the radius of a glycerol		
	molecule by viscosity measurement.		
	Potentiometry –		
	1. To determine the amount of Fe(II) in the		
	given solution by titration with a		
	standard K ₂ Cr ₂ O ₇ solution and hence to		
	find the formal redox potential of		
	$\mathrm{Fe}^{3+}/\mathrm{Fe}^{2+}$		
	2. To determine the solubility product and		
	solubility of AgCl potentiometrically		
USCHP05	using chemical cell.	3	8
	OR		
	3. To determine the solubility product and		
	solubility of AgCl potentiometrically		
	using concentration cell.		
	Colorimetry –		
	To determine the amount of Fe(III) present		
	in the given solution by using salicylic acid		
	by colorimetric titration.(static method)		
	(=525 nm)		
	pH –Metry –		
	To determine acidic and basic dissociation		
	constants of amino acid hence to calculate		
	isoelectric point.		
	Course USCH502		
	Inorganic Practicals		
	Inorganic preparations		
	1. Potassium diaquo bis-		
	(oxalate)cuprate		
	$(II)K_2[Cu(C_2O_4)_2.(H_2O]]$		
2. 3. <i>λ</i> 4.	CuCl2-2DMSO Bis(ethylene diamine)iron(II)sulphate[C ₂ H ₄ (NH ₂) ₂ FeSO ₄ .4H ₂ O]. Skill based Qualitative preparation of Chromium (II)acetate Cr(OAc) ₂ so that the following outcomes are achieved: • Setting up reactor for Cr(II)		
----------------------------	--	--	
	preparation of Chromium		
	(II)acetate $Cr(OAc)_2$ so that the		
	following outcomes are		
	achieved:		
	• Setting up reactor for Cr(II)		
	ions		
	Identification of oxidation		
	states of Chromium		
	Preparation of		
	chromium(II)acetate		
	 Isolation of the product 		

	Volumetric analysis		
	 Determination of magnesium from the supplied commercial sample of Milk of magnesia tablet Estimation of Nickel(II)complexome- trically using murexide indicator (Students are expected to standardize supplied EDTA solution using ZnSO₄.7H₂O) 		
	Practicals of Course USCH503		
USCHP06	 i. Separation of binary (solid-slid) mixture.(Weights and physical constant of both crude components of the mixture are to be reported. (Minimum 4 mixtures) ii. Identification of an organic compound of known chemical type. (Minimum 4 mixtures) Syllabus for Organic Chemistry Sem-VI Organic preparations Acetylation of hydroquinone. Nitration of nitrobenzene. Hydrolysis of ethyl benzoate. Bromination of acetanilide. Course USCH504 Analytical Practicals Estimation of persulphate in the given sample by the method of back titration. Determination of glucose content of a honey sample by Wilstater's method. Determination of the amount of fluoride in the given solution colorimetrically. Determination of Vitamin C content 	3	8

T.Y.B.Sc. Chemistry Credit Based Semester and Grading System To be implemented from the Academic year 2016-2017

SEMESTER VI

Theory

Course	UNIT		Credits	L / Week
USCH601	Ι	 1.1 Molecular Spectroscopy –I (15L) 1.1.1 Dipole moment: Dipole moment, polarization of a bond, bond moment, dipole moment and molecular structure. 1.1.2 Rotational Spectrum: Rotational spectrum of a diatomic molecule, rigid rotor, moment of inertia, energy levels, conditions for obtaining pure rotational spectrum, selection rule, nature of spectrum, determination of inter nuclear distance and isotopic shift. 1.1.3 Vibration (IR) spectrum: Vibrational motion, degrees of freedom, modes of vibration, vibrational spectrum of a diatomic molecule, simple harmonic oscillator, energy levels, zero point energy, conditions for obtaining vibrational spectrum, selection rule, nature of spectrum. 1.1.4 Vibration-Rotation spectrum of diatomic molecule vibrating rotor, energy levels, selection rule, nature of spectrum. 1.1.4 Vibration-Rotation spectrum of diatomic molecule vibrating rotor, energy levels, selection rule, fundamental band, overtones . Application of vibration-rotation spectrum in determining Force constant, determination and significance. Introduction to infrared spectra of simple molecules like H₂O and CO₂ 1.1.5 Raman Spectroscopy : Scattering of electromagnetic radiation, Rayleigh scattering, Raman scattering, nature of Raman spectrum, comparative study of IR and Raman spectra, rule of mutual exclusion.(example of CO₂molecule). 	2.5	1
	Π	 2.1.1 Classical mechanics, limitations of classical mechanics, Black body radiation, photoelectric effect, Compton effect. 2.1.2 Introduction to quantum mechanics, 		1

	Planck's theory of quantization wave	
	particle duality de-Broglie equation	
	Heisenberg's uncertainty principle	
	2.1.3 Progressive and standing waves	
	boundary conditions. Schrodinger's time	
	independent wave equation (derivation not	
	independent wave equation (derivation not	
	expected), interpretation and properties of	
	wave function.	
	2.1.4 Postulates of quantum mechanics (
	following are to be considered), 1. state	
	function and it's significance2. Concept of	
	operators : definition, addition, subtraction	
	and multiplication of operators,	
	commutative and non- commutative	
	operators, linear operator, Hamiltonian	
	operator, 3. Eigen function and eigen value,	
	eigen value equation.	
	2.2 Applied Electrochemistry (5L)	
	2.2.1 Polarization. concentration	
	polarization and it's elimination	
	2.2.2 Decomposition notantial	
	2.2.2 Decomposition potential,	
	experimental determination of	
	decomposition potential, factors affecting	
	decomposition potential (nature of	
	electrolyte, nature of electrodes and	
	temperature) Tafel's equation for hydrogen	
	overvoltage, Overvoltage, experimental	
	determination of over-voltage,	
	2.2.3	
	Electroplatingobjectives and procedures	
	3.1 Renewable Energy Sources (5L)	
	3.1.1. Lithium ion cell.	
	3.1.2 Fuel cells: Choice of fuel and	
	oxidant Bacon's H ₂ and O ₂ fuel cell	
	313 Solar cells solar energy photovoltaic	
	effect semiconductors as solar energy	
	converters, silicon solar cell	
	31 A Hydrogon : Eucl of the future	
	5.1.4. Hydrogen i fudrogen by direct	
	production of hydrogen by direct	
	lectrolysis of water, advantages of	
Ш	nydrogen as a universal energy medium.	1
	3.2 Nuclear Magnetic Resonance	-
	Spectroscopy (6L)	
	3.2.1. Nuclear spin, magnetic moment,	
	nuclear 'g' factor, energy levels, Larmor	
	precession, Relaxation processes in n.m.r. (
	spin-spin relaxation and spin-lattice	
	relaxation).	
	3.2.2 . NMR Spectrometer, chemical shift,	
	shielding and deshielding of protons, low	
	resolution n.m.r. spectrum of methanol and	
	ethanol.	

		3.3 Chemical Kinetics (4 L) 3.3.1 Collision theory of reaction rates, application of collision theory to 1. unimolecular reaction and 2. bimolecular reaction (Lindemann theory, derivation expected). Merits and drawbacks of collision theory.		
		3.3.2 Classification of reactions as slow, fast and ultra-fast. study of kinetics of fast		
		reactions by Stop flow method.		
	IV	 4.1 Nuclear Chemistry 4.1.1 Types of nuclear radiations and their characteristics, behaviour of ion pairs in electric field, detecton and measurement of nuclear radiations using G. M. Counter and Scintillation Counter. 4.1.2 Kinetics of radioactive decay, units of radioactivity (Curie, Bequerel, Rutherford) 4.1.3 Radioactive equilibrium (secular and transient), determination of radioactive constants for radio-elements having 1. moderate half life, 2. long half life 3.extremely long or short half life. 4.1.4 Use of radioisotpes as tracers in 1. chemical investigations- reaction mechanism, 2. age determination- dating by carbon-14 4.1.5 Nuclear reactions – nuclear transmutation, artificial radioactivity Q-value of nuclear reaction, threshold energy. 4.1.6 Fissile and fertile material, nuclear fission, chain reaction, factor controlling fission process. (multiplication factor and critical size or mass of fissionable material)., nuclear power reactor and 		1
USCH602	Ι	 breeder reactor. Coordination Chemistry (15L) 1.1 Crystal Field Theory (CFT) 1.1.1 Basic tenets of Crystal field theory and effect of crystal field on central metal valence orbitals. 1.1.2 Splitting of <i>d</i> orbitals in octahedral, tetrahedral and square planar complexes. 1.1.3 Crystal field splitting energy (10⁴/₁₀) for octahedral complexes and factors affecting the magnitude of ∠₁₀. 1.1.4 Crystal field stabilization energy (CFSE), calculation of CFSE, for octahedral and tetrahedral complexes with 	2.5	1

	d^{T} to d^{TO} metal ion configurations.			
	1.1.5 Effect of crystal field splitting on			
	i) Ionic radius and ii) Lattice energy.			
	1.1.6 Theoretical failure of the CFT model			
	117 Experimental evidence for co-			
	valence in co-ordination compounds (i)			
	ESD are stress of $[L_{C}(z)]^{2-}$ (ii) NMD			
	ESR spectrum of [IrC16] (11) NMR			
	spectrum of tris (acetyl acetanato)			
	vanadium complex, (iii) Intensities of d - d			
	transitions, and (iv) Nephelauxetic effect.			
	Consequences of crystal field splitting on			
	various properties such as fonic radii,			
	of formation, colour and magnetic			
	or formation, colour and magnetic			
	1 2 Molecular Orbital Theory (MOT) of			
	Coordination Complexes			
	121 Application to actahadral complexes			
	1.2.1 Application to octaneural complexes			
	in case of (1) $[T1(H_2O)]^{3+}$, (1) Fluoro			
	complexes of Fe(II) and Fe (III) and (iii)			
	Cyano complexes of Fe(II) and Fe (III).			
	1.2.2 Effect of pi-bonding an ligand field			
	splitting parameter in $M \rightarrow L$ and $L \rightarrow M$			
	interactions.			
	1.3 Electronic States and Terms for			
	Polyelectronic Atoms			
	1.3.1 Introduction: electronic			
	configuration and electronic states, Term			
	symbols, coupling of spin momenta			
	(M _s).orbital momenta (M ₁)and spin- orbit			
	coupling or Russell-Saunders coupling.			
	132 Determination of Terms for n^2			
	alastronic configuration (as in a			
	carbon atom)			
	1.2.2 Termer and minute states for the motion			
	1.3.3 Terms and micro-states for transition			
	metal atoms/ions.			
	2. Properties of Coordination compounds	-		
	(15L)			
	2.1 Stability of Complexes (5L)			
	2.1.1 Thermodynamic stability and kinetic			
	stability of complexes with examples.			
	2.1.2 Stability constants: Stepwise and			
	overall constants and their inter-			
	relationship			
	213 Factors affecting thermodynamic			
	stability			
П	3 1 4 Dotontion othic mothed of		1	
	2.1.4 Potentiometric method of			
	determination of stability constants with			
	example of silver-ammonia complex.			
	2.2 Substitution Reactions in Octahedral			

2.2.1 Introduction, types of reactions in complexes.
2.2.2 Ligand substitution reactions: basic mechanisms.
2.2.3 Inert and labile complexes and

		 electronic configurations and lability of complexes. 2.2.4 Acid hydrolysis, base hydrolysis and anation reactions. 2.3 Electronic Spectra (5L) 2.3.1 Types of electronic transitions like intra –ligand transitions, charge transfer transitions and intra-metal transitions and (<i>d-d</i> or ligand field transitions for transition metals). 	
		and Orbital or Laporte selection rules. Orgel Diagrams for D Terms (i.e, d^1 , d^4 and d^6 . d^9 electronic configurations) and its use	
-		in interpretation of visible electronic absorption spectra of these configurations.	
	ш IV	 3.1 Organometallic Compounds of main group metals (6L) 3.1.1 Introduction: General synthetic methods: (i) Oxidative addition, (ii) Metal-Metal exchange (Transmetallation), (iii) Carbanion-Halide exchange, (iv) Metal Hydrogen exchange and (v) Methylene insertion reactions. 3.1.2 Chemical rections: (i) Reactions with oxygen, (ii) Alkylation and arylation reactions (iii) Reactions with protic reagents and (iv) Complex formation reactions. 3.2 Organometallic compounds of transition metals (9L) 3.2.1 Synthesis , structure, reactions and of ferrocene. 3.2.2 Bonding in ferrocene on the basis of VBT. 3.2.3 Bonding in Re and Mo halide complexes. Some Selected Topics (15L) 4.1 Inorganic Polymers (3L) 4.1.1 Various methods of classification with examples. 4.2 Chemistry of borazine with reference to preparation , properties, structures, bonding and applications. 	1
			1

		of Liquid Effluent (06L)		
		4 2 2 Characterization of waste		
		hiochemical oxygen demand (BOD)		
		chemical oxygen demand (COD) total		
		organic carbon (TOC) aerobic and		
		anaerobic processes		
		4.2.3 Removing of solid		
		contaminants, physical and chemical		
		principles such as coagulation. flocculation		
		and sedimentation.		
		4.2.4 Primary secondary and		
		tertiary of liquid effluents.		
		4.3 Nanomaterials(04L)		
		4.3.2 Introduction and importance		
		of nanomaterials.		
		4.3.3 Properties (Comparison		
		between bulk and nanomaterials): (i)		
		Optical properties, (ii) Electrical		
		conductivity, and (iii) Mechanical		
		properties.		
		4.3.4 Forms of nanomaterials:		
		nanofilms, nanolayers, nanotubes,		
		nanowires, and nanoparticles.		
		4.3.5 Chemical methods of		
		preparation: (i) Colloidal route, and (ii) Sol-		
		gel method.		
		4.5 Inorganic Pharmaceuticals (2L)		
		4.4.2 Gastrointestinal agents viz.,		
		(i) antacids (aluminium hydroxide, milk of		
		magnesia, sodium bicarbonate and (ii)		
		cathartics (magnesium sulphate and sodium		
		phosphate).		
		Topical agents viz., (i) protectives and		
		adsorbents (talc, calamine), (ii)		
		antimicrobial agents (potassium		
		permanganate, tincture iodine, boric acid)		
		and astringents (alum).		
		1.1 Spectroscopy (15L)		
		1.1.1 Introduction : Electromagnetic		
		spectrum, units of wavelength and		
	т	1 1 2 LIV Visible Speetroscopy Pagia	25	1
USCH003	I	theory solvents nature of UV VIS	2.3	1
		spectrum concept of Chromophore		
		auxochrome bathochromic		
		shift Hypsochromic shift hyperchromic		
		shift,Hypsochromic shift hyperchromic		

	effect and chromophore-auxochrome	
	interactions.	
	1.1.3 IR Spectrocopy: Basic theory nature	
	of IR spectrum selection rule fingerprint	
	region	
	1.1.4 PMP Spectroscopy: Basic theory of	
	NMD noture of DMD anostroup chamical	
	NMR, nature of PMR spectrum, chemical	
	shift (\mathcal{O} unit), standard for PMR, solvents	
	used. Factors affecting chemical shift:	
	(1) inductive effect (2) anisotropic effect	
	(with reference to C=C, C \equiv C, C=O and	
	benzene ring). Spin- spin coupling and	
	coupling constant. Proton exchange-	
	application of deuterium exchange	
	Application of PMR in structure	
	determination.	
	1 1 5 Spectral characteristics of following	
	classes of organic compounds including	
	banzona and monosubstituted banzonas	
	with respect to LW VIS ID DMD.	
	whill respect to 0.7 v is, it, FWR.	
	(1) alkanes (2) alkenes and polyenes (3)	
	alkynes (4) haloalkanes (5) alcohols	
	(6) carbonyl compounds (7) ethers (8)	
	carboxylic acids (9) esters (10)amines	
	(11) amides (broad regions characteristic of	
	different groups are expected).	
	1.1.6 Mass Spectrometry: Basic	
	theory.Nature of mass spectrum. General	
	rules of fragmentation. Importance of -	
	molecular ion peak, isotopic peaks.	
	basepeak. Nitrogen rule Illustrative	
	fragmentation of alkanes and alightic	
	carbonyl compounds (No Mclafferty	
	rearrangement)	
	1 1 7 Problems of structure elusidation of	
	1.1.7 Problems of structure elucidation of	
	simple organic compounds using individual	
	or combined use of the above spectroscopic	
	technique are expected.(index of	
	hydrogen deficiency should be the first step	
	in solving the problems).	
	21 Deluments (111)	
	2.1 Polymers (IIL)	
	2.1.1 Introduction: General idea of	
	monomers, polymers, and polymerization,	
	natural and synthetic polymers.	
т	Homoplymers and copolymers.	1
11	Classification of polymers- Plastic, fibres,	I
	resins, elastomers. Thermoplastics and	
	thermosets. Copolymers-alternating, block,	
	random, graft.	
	2.1.2 Mechanism of free radical addition	

I			
		polymerization.	
		2.1.3 Elastomers: Natural and synthetic	
		rubbers. Diene polymerization: 1.2- and	
		1 4- addition (cis and trans) polymerization	
		of isoprene 1 3-Butadiene-styrene	
		conolymer	
		2.1.4 Staragehemistry of polymers:	
		Z.1.4 Steleochemistry of polymers.	
		l'acticity. Role of Ziegler-Natta catalyst	
		(co- ordination polymerization) in directing	
		the tacticity in polypropylene (no	
		mechanism).	
		2.1.5 Preparation & use of polymers:	
		(1) Addition polymers: (a) polyethylene	
		(b)polypropylene (c) PVC (d) polystyrene	
		(e) polyacrylonitrile (f) polyvinylalcohol	
		(g) Teflon.	
		(2) Condensation Polymers: (a) Polyesters	
		(b) polyamides (c) polyurethans (d)phenol-	
		(o) polyanides (o) polyanetians (a) prenor	
		nolvearbonates	
		2.1.6 Degualable polymore. Biodegradable	
		2.1.0 Recyclable polymers. Biomedical was of	
		polymers and their uses. Biomedical use of	
		polymers.	
		2.1./ Additives to polymers: Plasticizers	
		,stabilizers and fillers.(The students are	
		expected to identify monomers in a given	
		polymer and draw the structure of a polymer	
		from a given set of monomers).	
		2.2 Photochemistry	
		2.2.1 Introduction: Difference between	
		thermal and photochemical reactions.	
		Jablonski diagram, singlet and triple states,	
		allowed and forbidden transitions, fate of	
		excited molecules, photosensitization, 2.2.2	
		Photochemical reactions of olefins:	
		photoisomerisation photochemical	
		rearrangement of 1 4-dienes (di π methane)	
		2.2.3 Photochemistry of carbonyl	
		compounds: Norrish I. Norrish II alaguages	
		Dhoto reduction (a.g. honzorhanona to	
		r noto reduction (e.g. benzophenone to	
		3.1 Catalysts and Reagents (5L)	
		Study of the following catalysts and	
		reagents with respect to functional group	
		transformations and selectivity (no	
	Ш	mecnanism).	
	3.1	.1 Catalysts : Catalysts for hydrogenation:	
		Raney Ni,Pt and PtO ₂ : C=C, CN, NO ₂ ,	
		aromatic ring; Pd/C : C=C, COC1 \rightarrow CHO	
		(Rosenmund); Lindlar catalyst: alkynes;	
		winkiiisoii s calaiyst ioi	

stores selective reduction of elefine	
stereo selective reduction of olefinis.	
3.1.2 Reagents : (1)L1AIH4 and Red-AI:	
reduction of CO,COOR, CN, NO ₂ . (2)	
NaBH4: reduction of CO (3) SeO ₂ :	
hydroxylation of allylic and benzylic	
positions oxidation of CH ₂ , alpha to CO to	
$CO(5)mCPBA$ and $R-OOH/H_2O_2$ for	
epoxidation of $C - C$ (6) NBS: allylic and	
bongulia bromination of position alpha to	
benzyne brommation of position alpha to	
3.2 Natural Products (10L)	
3.2.1 Introduction: Primary and secondary	
metabolites. Introduction to the following	
natural products with respect to the sources	
and classes. (Structures of the	
compounds specified below are expected).	
(a) Terpene: Isoprene and special isoprene	
rule a ternenial citral camphor a pipene	
(b) Alkalaida: nigotina atropina	
(b) Aikaiolus. inconie, auopine.	
(c) vitamins: vitamins A and C.	
(d) Hormones: adrenaline, thyroxine.	
(e) Steroids: cholesterol, progesterone.	
3.2.2 Structure determination of natural	
products: 3.2.2.1 Ozonolysis in terpenoids-	
Examples of open chain and monocyclic	
monoterpenes, 3.2.2.2 Hofmann exhaustive	
methylation and degradation in alkaloids –	
simple open chain and monocyclic	
aminos 3.2.2.3 Structure determination of	
ainines. 5.2.2.5 Structure determination of	
citral and mouthe inrough degradation	
studies. Total synthesis of degradation	
studies. Total synthesis of (i) Citral from	
3-methylbutan-1-ol (ii) Nicotine from	
nicotinic acid.	
3.2.4 Commercial importance of	
terpenoids and alkaloids.	
Synthesis of campbor from a	
synthesis of campion from a-	
pinene, a and p ionones,	
geraniol and nerol from citral.	
3.2.5	
4.1 Organometallic Chemistry (5L)	
4.1.1 Intoduction: Carbon-metal bond-	
Nature, types reactivity.	
4 1 2 Organo magnesium Compounds	
Grignard reagant : Preparation structure	
W and stability Deastion with compounds	1
IV and stability, Reaction with compounds	1
containing acidic nydrogen,carbonyl	
compounds, cyanides and CO ₂ .	
4.1.3 Organolithium Compounds :	
Preparation using alkyl/aryl halides.	

		acidic hydrogen, alkyl halides, carbonyl compounds, cyanides and CO ₂ . Lithium dialkyl cuprates: Preparation and reactions with aliphatic /aromatic/vinylic halides. 4.1.4 Organozinc compounds : Preparation of dialkyl zinc. Reaction with water, acid chlorides and alkyl halides. Reformatsky reaction (with mechanism). 4.2 Chemistry of some Important Biomolecules: (10L) 4.2.1 α -Amino acids: Structure, configuration, Essential amino acids and their abbreviations, classification, Properties: pH dependency of ionic structure and isoelectric point. Methods of preparations: Strecker synthesis, amidomalonate synthesis, Erlenmeyer azalactone synthesis. 4.2.2 Polypeptides and Proteins: Polypeptides: Peptide bond. Nomenclature and representation of polypeptides. Merrifields solid phase peptide synthesis (example of di- and tri- peptides for nomenclature and synthesis). Proteins: Sources, types, functions, colloidal nature, separation based on isoelectric point, denaturation and functions. Partial and total hydrolysis. General idea of primary, secondary, tertiary and quartenary structures.		
		4.2.3 Nucleic acids: Selective hydrolysis of nucleic acids.Sugars and bases in nucleic acids. Stuctures of nucleosides an nucleotides in DNA and RNA. Structure of nucleic acids (DNA and RNA): Base pairing in nucleic acids. Importance of nucleic acids-self duplication, protein synthesis.		
USCH604	Ι	Electroanalytical methods. (15L) 1.1 D.C. Polaroghraphy (11L): Polarizable and nonpolarizable electrodes, basic principles, residual current, diffusion current, limiting current, dropping mercury electrode, supporting electrolyte half wave potential, derivation of the polarographic wave equation for a reversible reaction. Ilkovic equation, oxygen interference and its removal, maxima and maxima suppressors, polarographic cell, qualitative	2.5	1

	 and quantitativeanalysis, calibration curve and standard addition method, applications. [Numerical problems expected] 1.2 Amperometric Titrations: Basic principles, rotating platinum electrode and nature of the titration curves, applications, advantages and limitations. 	
П	 Methods of separation-II (15L) 2.1 Gas chromatography (6L): Gas liquid chromatography, basic principles retention time, retention volume, resolution, peak width theoretical plates. HETP, instrumentation, columns, detectors, applications. 2.2 High Performance Liquid Chromatography (4L): Instrumentation, types of elution, U.V. and I.R. detector and applications 2.3 Ion Exchange Chromatography (5L): Types of ion exchangers, mechanism of ion exchange, selectivity coefficients and separation factors, capacity and its determination, factors affecting the separation of ions, applications. 	1
III	 Treatment of analytical data-II and Titrimetric analysis-II (15L) 3.1 Treatment of Analytical Data (6L): Distribution of random errors, Gaussian curve, students' t, confidence limits and confidence interval, criteria for rejection of result: 2.5d rule,4.0 rule and Q test, F teset, testing for significance, null hypothesis, method of averages, least squares method. Numerical problems expected] 3.2 Complexometric Titrations (5L): General introduction, EDTA titrations, advantages and limitations of EDTA as the titrant, absolute and conditional formation constants of metal EDTA complexes, construction of titration curves, types of EDTA titrations,methods of increasing the selectivity of EDTA as a titrant, metallochromic indicators, theory and applications. 3.3 Redox Titrations (4L): General introduction, theory of redox indicators, criterion for choosing an indicator for a redox titration, construction of the titration curves in the case of (1) Fe (II) Vs. Ce(IV) 	1

	(2) Fe (II) Vs. dichromate, use of diphenyl amine and ferroin as redox indicators.	
IV	 Concepts in Quality and miscellaneous methods (15L) 4.1 Total quality management (5L) : concept of quality, quality control, quality assurance total quality management, ISO series, Good laboratory practices 4.2 Mass Spectrometry (2L): Basic principles, introduction of components only 4.3 Thermal Methods (5L): Classification of thermal methods, thermogravimetric analysis, basic principles, instrumentation factors affecting the TG curve, applications 4.4 Introduction to Radio Analytical Techniques (3L): Classification of the techniques, introduction to neutron activation analysis and its applications. 	1

	Practicals		
	Practicals of Course USCH601		
	Physical Practicals		
	Chemical Kinetics –		
	To determine the energy of activation for the		
	acid catalysed hydrolysis of methyl acetate.		
	Partition coefficient		
	To determine the equilibrium constant for the		
	reactionKI + I_2 KI ₃ by partition method.		
	(Partion coefficient of I ₂ between CCl4 and		
	water is to be given)		
USCHP07 I	otentiometry –	3	8
	1. To determine the strength of the given		
	strong acid (HCl) by potentiometric		
	titration using quinhydrone electrode		
	(Calculation of pH from Ecell and the		
	plot of (a) 🏪 against V		
	(b) pH against V graphs are expected).		
	OR		
	To determine pKa value of the given		
	weak monobasic acid (CH ₃ COOH)		
	by e.m.f. measurements.		
	2. To determine E_{cal} at room temperature		

	and using this value, determine standard reduction potential of Ag/Ag ⁺ electrode at room temperature. Conductometry – To determine the amount of dibasic acid (Oxalic acid) by conductometric titration against strong base. OR To determine the relative strength of monochloroacetic acid and acetic acid conductometrically. Course USCH602 <u>Inorganic Preparations</u> 1. Mercury tetrathiocyanato Cobaltate Hg[Co(SCN)4] 2. Magnesium oxinate[Mg(Ox)2] 3. Tris-acetyl acetonato iron(III) [Fe(AcAc)3] 4. Tetrammine copper(II) sulphate. [Cu(NH3)4]SO4.H2O Inorganic estimations/ Analysis 1. Estimation of copper iodometrically using sodium thiosulphate. (Students are expected to standardize supplied sodium thiosulphate solution using potassium dichromate) 2. Estimation of lead by complexomety using EDTA solution. (Students are expected to standardize the supplied EDTA solution. Suggested standard for standardization: ZnSO4.7H ₂ O)	(II)	
USCHP08	Practicals of Course USCH603 Organic Practicals Binary Mixture Separation Seperation of mixture containing (VL + NVL) & (S + VL) components. Organic Preparations 1. Aniline/p-toluidine → N-Acetyl derivative 2. Salicylic acid/nitrobenzene/ Acetanilide → Nitro derivative	3	8

 β- naphthol → Methyl Ether derivative (Using dimethyl sulphate) 	
 4. Acetanilide → p-bromoacetanilide derivative 	
 5. Aniline/ p-toluidine → Schiff base with benzaldehyde 	
6. Hydroquinone/beta naphthol → Acetyl derivative	
 Methyl salicylate/ethyl benzoate → Acid derivative (Hydrolysis) 	
 8. Benzaldehyde/p-nitrobenzaldehyde → Acid (Oxidation) 	
Course USCH604	
Analytical Practicals	
1. Determination of chemical oxygen	
demand of a water sample.	
2. Determination of percentage purity of a sample of common salt using a cation exchanger.	
3. Determination of potassium content of a commercial salt sample by flame photometry	
 4. Determination of acetic acid content of a vinegar sample by potentiometric titration with sodium hydroxide using quinbydrone 	
 5. Determination of Cr (VI) in the given solution as dichromate by the method of least squares, spectrophotometrically 	

Reference List for Paper-I (Physical Chemistry)

- 1. Physical Chemistry, Ira Levine, 5th Edition, 2002 Tata McGraw Hill Publishing Co.Ltd.
- 2. Physical Chemistry, P.C. Rakshit, 6th Edition, 2001, Sarat Book Distributors, Kolkota.
- 3. Physical Chemistry, R.J. Silbey, & R.A. Alberty, 3rd edition , John Wiley & Sons, Inc [part 1]
- 4. Physical Chemistry, G. Castellan, 3rd edition, 5th Reprint, 1995 Narosa Publishing House.
- 5. Modern Electrochemistry, J.O.M Bockris & A.K.N. Reddy, Maria Gamboa – Aldeco 2nd Edition, 1st Indian reprint,2006 Springer
- Visible & U.V. Spectroscopy, Analytical Chemsitry by Open Learning
 R. Demny and R. Sinclair M 1991 John Wiley & Sons
- Classical Methods , Vol 1 Analytical Chemistry by Open Learning D. Cooper & C. Devan, 1991 John Wiley & Sons
- 8. Physical Chemistry, G.M. Barrow, 6th Edition, Tata McGraw Hill Publishing Co. Ltd. New Delhi.
- 9. The Elements of Physical Chemistry, P.W. Atkins, 2nd Edition, Oxford Universitty Press Oxford
- 10.Physical Chemistry, G.K. Vemullapallie, 1997, Prentice Hall of India, Pvt.Ltd. New Delhi.

References for Paper-II.(Inorganic Chemistry).

- 1. D. Banerjea, *Coordination chemistry*, Tata McGraw Hill, New Delhi, (1993).
- 2. D. F. Shriver and P. W. Atkins, *Inorganic chemistry*, 3rd Ed., Oxford University Press, (1999).
- 3. K. F. Purcell and J. C. Kotz, *Inorganic chemistry*, Saunders, Hongkong, (1977).
- 4. N. N. Greenwood and E. Earnshaw, *Chemistry of elements*, Pergamon Press, Singapore, (1989).
- 5. W. L. Jolly, *Modern inorganic chemistry*, 2nd Ed. McGraw Hill Book Co., (1991).
- 6. B. E. Douglas and H. McDaniel, *Concepts and models in inorganic chemistry*, 3rd Ed., John Wiley & Sons, Inc., New York, (1994).
- 7. G. N. Mukherjee and A. Das, *Elements of bioinorganic chemistry*, Dhuri and Sons, Calcutta, (1988).
- 8. R. W. Hay, Bioinorganic chemistry, Ellis Harwood, England, (1984).

- 9. R. C. Mehrotra and A. Singh, Organometallic chemistry: A unified approach, Wiley Eastern, New Delhi, (1991).
- For synthesis of iron ethylenediamine sulphate refer Practical Inorganic Chemistry by G. Marr and B. W. Rockett, Van Nostrand Reinhold Company London1972. P 34.
- 11.For preparation of CuCl₂.2DMSO Refer Microscale Inorganic Chemistry by Z. Szafran, Ronald M. Pike and Mono M. Singh. Pub. John Wiley and Sons1991.p.218.

References For Paper-III (Organic Chemistry)

- 1. Organic Chemistry, Francis A Carey, Pearson Education, 6th Edition, Special Indian Edition 2008
- 2. Organic Chemistry, R.T. Morrison and R.N. Boyd, 6th Edition, Pearson Edition
- 3. Organic Chemistry, T.W.G. Solomon and C.B. Fryhle, 8th Edition, John Wiley & Sons, 2004
- 4. A guide to mechanism in Organic Chemistry, 6th Edition, Peter Sykes, Pearson Education
- 5. Fundamentals of Organic Chemistry , G. Marc Loudon, 4th Edition Oxford
- 6. Organic Chemistry, L.G. Wade Jr and M.S. Singh, 6th Edition, 2008
- 7. Organic Chemistry Baula Y. Bruice, Pearson Edition, 2008
- 8. Organic Chemistry, J.G. Smith, 2nd Editionm Special Indian Edition, Tata McGraw Hill
- 9. Organic Chemistry, S.H. Pine, McGraw Hill Kogakusha Ltd.
- 10.Stereochemistry, P.S. Kalsi, New Age International Ltd. 4th Edition, 2006

Reference List for Paper-IV (Analytical Chemistry)

- 1. D. Harvey, Modern Analytical Chemistry, The McGraw-Hill Pub. 1st Edition (2000)
- 2. H.S. Ray, R Sridhar and K.P. Abraham, Extraction of Nonferrous Metals, AffiliatedEast-West Press Pvt. Ltd. New Delhi (1985) reprint 2007.
- 3. G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denney, Vogel's Textbook of Qunatitative Chemical Analysis, Fifth edition, ELBS Publication (1996)
- 4. D.A. Skoog D.M. West and F.J. Holler, Fundametals of Analytical Chemistry, 7thEdition (printed in India in 2001) ISBN Publication.
- 5. Analytical Chemistry, J.G. Dick, 1973 Tata McGraw Hill Publishing Co. Ltd. New Delhi.
- 6. Quantitative analysis, Dey & Underwood, Prentice Hall of India, Pvt. Ltd.

New Delhi

7. Fundamentals of Analytical Chemistry, Skoog etal 8th edition, Saunders college publishing.

UNIVERSITY OF MUMBAI

No. UG/730f 2018-19

CIRCULAR:-

Attention of the Principals of the affiliated Colleges and Directors of the recognized Institutions in Science & Technology Faculty is invited to this office Circular Nos. UG/156 of 2016-17, dated 16th November, 2016 relating to syllabus of the Bachelor of Science (B.Sc.) degree course.

They are hereby informed that the recommendations made by the Board of Studies in Chemistry at its meeting held on 28th May, 2018 have been accepted by the Academic Council at its meeting held on 14th June, 2018 <u>vide</u> item No. 4.41 and that in accordance therewith, the revised syllabus as per the (CBCS) for the Chemistry of T.Y.B.Sc. Physical Chemistry, Inorganic Chemistry, Organic Chemistry and Analytical Chemistry (Sem - V & VI) (3 and 6 Units) including Applied Component Drugs and Dyes, Heavy Fine Chemicals and Petrochemicals has been brought into force with effect from the academic year 2018-19, accordingly. (The same is available on the University's website <u>www.mu.ac.in</u>).

ullan

(Dr. Dinesh Kamble) I/c REGISTRAR

MUMBAI - 400 032 6th June, 2018 To July

The Principals of the affiliated Colleges & Directors of the recognized Institutions in Science & Technology Faculty. (Circular No. UG/334 of 2017-18 dated 9th January, 2018.)

A.C./4.41/14/06/2018

No. UG/ 73-A of 2018

MUMBAI-400 032

th June, 2018 July

Copy forwarded with Compliments for information to:-

- 1) The I/c Dean, Faculty of Science & Technology,
- 2) The Chairman, Board of Studies in Chemistry,
- 3) The Director, Board of Examinations and Evaluation,
- 4) The Director, Board of Students Development,
- 5) The Co-Ordinator, University Computerization Centre,

unden

(Dr. Dinesh Kamble) I/c REGISTRAR

T.Y.B.Sc. CHEMISTRY (6 UNITS)

Choice Based Semester and Grading System

SEMESTER V

INORGANIC CHEMISTRY

COURSE CODE: USCH502

CREDITS: 02

LECTURES: 60

UNIT-I	L/Week
1. Molecular Symmetry and Chemical Bonding	
1.1Molecular Symmetry (6L)	
1.1.1 Introduction and Importance of Symmetry in Chemistry.	
1.1.2 Symmetry elements and Symmetry operations.	
1.1.3 Concept of a Point Group with illustrations using the	
following point groups :(i) $C_{\omega V}$ (ii) $D_{\omega h}$ (iii) C_{2V} (iv) C_{3v} (v) C_{2h} and (vi) D_{3h}	
1.2 Molecular Orbital Theory for heteronuclear diatomic	
molecules and polyatomic species (9L)	
1.2.1 Comparision between homonuclear and heteronuclear diatomic molecules.	
1.2.2. Heteronuclear diatomic molecules like CO, NO and HCl,	
appreciation of modified MO diagram for CO.	
1.2.3 Molecular orbital theory for H_3 and H_3^+ (correlation	
diagram expected).	
1.2.4. Molecular shape to molecular orbital approach in AB ₂	
molecules. Application of symmetry concepts for linear and	
angular species considering σ - bonding only.	
(Examples like : i) BeH ₂ , ii) H ₂ O).	
UNIT-II	
2 SOLID STATE CHEMISTRY	
2.1 Structures of Solids (11L)	
2.2.1 Explanation of terms viz.crystal lattice, lattice point, unit cell	
and lattice constants.	
2.1.2 Closest packing of rigid spheres (hcp,ccp), packing density	
in simple cubic, bcc and fcc lattices. Relationship between	
density, radius of unit cell and lattice parameters.	

2.1.3 Stoichiometric Point defects in solids (discussion on F	renkel
and Schottky defects expected).	
2.2 Superconductivity	(4L)
2.2.1 Discovery of superconductivity.	
2.2.2 Explanation of terms like superconductivity, transition	1
temperature, Meissner effect.	
2.2.3 Different types of super conductors viz.conventional	
superconductors, alkali metal fullerides, high tempera	iture
super conductors.	
2.2.4 Brief application of superconductors.	
UNIT-III	
3.0 CHEMISTRY OF INNER TRANSITION ELEMEN	TS
(15L)	
3.1 Introduction: Position in periodic table and electronic	
configuration of lanthanides and actinides.	
3.2 Chemistry of Lanthanides with reference to (i) lanth	anide
contraction and its consequences(ii) Oxidation states (iii	
Ability to form complexes (iv) Magnetic and spectral	
properties	
3.3 :Occurrence, extraction and separation of lanthanides by	/ (i)
Ion Exchange method and (ii) Solvent extraction metho	bd
(Principles and technique)	
3.4 Applications of lanthanides	
UNIT-IV	
4. SOME SELECTED TOPICS	
4.1 Chemistry of Non-aqueous Solvents	(5 L)
4.1.1Classification of solvents and importance of non-aqueo	ous
solvents.	
4.1.2 Characteristics and study of liquid ammonia, dinitroge	en tetra
oxide as non-aqueous solvents with respect to : (1) act	d-base
reactions and (11) redox reactions.	(=+)
4.2 Comparative Chemistry of Group 16	(5L)
4.2.1 Electronic configurations, trends in physical properties	5,
allotropy	
4.2.2 Manufacture of sulphuric acid by Contact process.	
4.3 Comparative Chemistry of Group 17 (5L)	1
4.3.1 Electronic configuration, General characteristics, anan	nolous
properties of fluorine, comparative study of actually of	and
structures (on the basis of VSEDD theory)	and
4.3.2 Chemistry of interhalogons with reference to propertie	ons
roperties and structures (on the basis of VSEDD that	
properties and structures (on the basis of v SEPK the	<i>лу</i> ј.

REFERENCES

SEM-V

Unit-I

- 1. Per Jensen and Philip R. Bunker, Fundamentals of Molecular Symmetry, Series in Chemical Physics, Taylor & Francis Group
- 2. J. S. Ogden, Introduction to Molecular Symmetry, Oxford University Press
- 3. Derek W. Smith, Molecular orbital theory in inorganic chemistry Publisher: Cambridge University Press
- C. J. Ballhausen, Carl Johan Ballhausen, Harry B. Gray Molecular Orbital Theory: An Introductory Lecture Note and Reprint Volume Frontiers in chemistry Publisher W.A. Benjamin, 1965
- 5. Jack Barrett and Mounir A Malati, Fundamentals of Inorganic Chemistry, Affiliated East west Press Pvt. Ltd., New Delhi.
- 6. Satya Prakash, G.D.Tuli, R.D. Madan , , Advanced Inorganic Chemistry.S. Chand & Co Ltd

Unit-II

- 1. Lesley E. Smart, Elaine A. Moore Solid State Chemistry: An Introduction, 2nd Edition CRC Press,
- 2. C. N. R. Rao Advances in Solid State Chemistry
- 3. R.G. Sharma Superconductivity: Basics and Applications to Magnets
- 4. Michael Tinkham ,Introduction to Superconductivity: Vol I (Dover Books on Physics)
- 5. R. Gopalan, Inorganic Chemistry for Undergraduates, Universities Press India.
- 6. Richard Harwood, Chemistry, Cambridge University Press,
- 7. Satya Prakash, G.D.Tuli, R.D. Madan , , Advanced Inorganic Chemistry.S. Chand & Co Ltd .

Unit-III

- 1. Cotton, Wilkinson, Murillo and Bochmann, Advanced Inorganic Chemistry, 6th Edition.
- 2. Greenwood, N.N. and Earnshaw, Chemistry of the Elements, Butterworth Heinemann. 1997.
- 3. Huheey, J.E., Inorganic Chemistry, Prentice Hall, 1993.
- 4. G. Singh, Chemistry of Lanthanides and Actinides, Discovery Publishing House
- 5. Simon Cotton, Lanthanide and Actinide Chemistry Publisher: Wiley-Blackwell

Unit-IV

- 1. B. H. Mahan, University Chemistry, Narosa publishing.
- 2. R. Gopalan, Inorganic Chemistry for Undergraduates, Universities Press India.

- 3. J. D. Lee, Concise Inorganic Chemistry, 4thEdn., ELBS,
- 4. D. F. Shriver and P. W. Atkins, Inorganic chemistry, 3rd edition, Oxford University Press
- Cotton, Wilkinson, Murillo and Bochmann, Advanced Inorganic Chemistry, 6th Edition.
- 6. Gary Wulfsberg, Inorganic chemistry, Viva Books Pvt, Ltd. (2002).
- 7. Richard Harwood, Chemistry, chapter 10 Industrial inorganic chemistry
- 8. Greenwood, N.N. and Earnshaw, Chemistry of the Elements, Butterworth Heinemann. 1997.
- 9. Huheey, J.E., Inorganic Chemistry, Prentice Hall, 1993
- 10. Satya Prakash, G.D.Tuli, R.D. Madan, Advanced Inorganic Chemistry.S. Chand & Co Ltd 2004

Practicals

SEMESTER V

INORGANIC CHEMISTRY

COURSE CODE: USCHP05

Course USCH502: Inorganic Practicals

I. Inorganic preparations

- 1. Preparation of Potassium diaquobis- (oxalato)cuprate (II)
- 2. Preparation of Ferrous ethylene diammonium sulphate.
- 3. Preparation of bisacetylacetonatocopper(II)

II. Determination of percentage purity of the given water soluble salt and qualitative detection w.r.t added cation and/or anion (qualitative analysis only by wet tests).

(Any three salts of transition metal ions)

Reference Books (practicals)

1. Vogel Textbook of Quantitative Chemical Analysis G.H. Jeffery, J. Basset.

CREDITS: 02

(60L)

- Advanced experiments in Inorganic Chemistry., G. N. Mukherjee., 1st Edn., 2010., U.N.Dhur & Sons Pvt Ltd.
- 3. Vogel's. Textbook of. Macro and Semimicro qualitative inorganic analysis. Fifth edition.

SEMESTER VI

INORGANIC CHEMISTRY

COURSE CODE: USCH602

CREDITS: 02

LECTURES: 60

COURSE CODE	CREDITS	
USCH602 (60 Lectures)		
(Numericals and word problems are expected)		
UNIT-I		L/week
1.Theories of the metal-ligand bond ((15L)	
1.1 Limitations of Valence Bond Theory	Ι.	
1.2 Crystal Field Theory and effect of c	rystal field on central metal	
valence orbitals in various geometric	es from linear to	
octahedral(from coordination numb	er 2 to coordination number	
6)		
1.3 Splitting of <i>d</i> orbitals in octahedral,	square planar and tetrahedral	
crystal fields.		
1.4 Distortions from the octahedral geor	netry : (i) effect of ligand	
field and (ii) Jahn-Teller distortions.		
1.5 Crystal field splitting parameters Δ ; its calculation and factors		
affecting it in octahedral complexes,	Spectrochemical series.	
1.6 Crystal field stabilization energy(CF	SE), calculation of CFSE for	
octahedral complexes with d ⁰ to d ¹⁰ metal ion configurations.		
1.7 Consequences of crystal field splitting on various properties such		
as ionic radii, hydration energy and enthalpies of formation of		
metal complexes of the first transition series.		
1.8 Limitations of CFT : Evidences for covalence in metal complexes		
(i) intensities of d-d transitions, (ii) ESR spectrum of $[IrCl_6]^{2-}$ (iii)		
Nephelauxetic effect.		
UNIT-II		
2.Theories of the metal-ligand bond (II)		
2.1 Molecular orbital Theory for coor	dination compounds. (4L)	

2.1.1 Identification of the central metal orbitals and their symmetry	
suitable for formation of σ bonds with ligand orbitals.	
2.1.2 Construction of ligand group orbitals.	
2.1.3 Construction of σ -molecular orbitals for an ML ₆ complex.	
2.1.4 Effect of π -bonding on complexes.	
2.1.5 Examples like $[FeF_6]^{-4}$, $[Fe(CN)_6]^{-4}$, $[FeF_6]^{-3}$, $[Fe(CN)_6]^{-3}$, $[CoF_6]^{-3}$, $[CoF_6]^{-3}$, $[Co(NH_3)_6]^{+3}$	
2.2 Stability of Metal-Complexes (4L)	
2.2.1 Thermodynamic and kinetic perspectives of metal complexes	
with examples.	
2.2.2 Stability constants: stepwise and overall stability constants and	
their interrelationship.	
2.2.3 Factors affecting thermodynamic stability.	
2.3 Reactivity of metal complexes. (4L)	
2.3.1 Comparison between Inorganic and organic reactions.	
2.3.2 Types of reactions in metal complexes.	
2.3.3 Inert and labile complexes : correlation between electronic	
configurations and lability of complexes.	
2.3.4 Ligand substitution reactions : Associative and Dissociative	
mechanisms.	
2.2.5 Acid hydrolysis, base hydrolysis and anation reactions.	1
$2 4 \mathbf{F} \mathbf{L} 2 4 2 1 2$	
2.4 Electronic Spectra.(3L)2.4 1Origin of electronic spectra	
2.4 Electronic Spectra. (3L)2.4.1Origin of electronic spectra2.4.2 Types of electronic transitions in coordination compounds:	
2.4 Electronic Spectra. (3L)2.4.1Origin of electronic spectra2.4.2 Types of electronic transitions in coordination compounds:intra_ligend Charge transfer and intra_metal transitions	
2.4 Electronic Spectra. (3L)2.4.1Origin of electronic spectra2.4.2 Types of electronic transitions in coordination compounds: intra- ligand,Charge transfer and intra-metal transitions.2.4.3 Selection rules for electronic transitions	
2.4 Electronic Spectra. (3L)2.4.1Origin of electronic spectra2.4.2 Types of electronic transitions in coordination compounds: intra- ligand,Charge transfer and intra-metal transitions.2.4.3 Selection rules for electronic transitions.2.4.4 Electronic configuration and electronic micro states. Terms and	
2.4 Electronic Spectra.(3L)2.4.1Origin of electronic spectra2.4.2 Types of electronic transitions in coordination compounds: intra- ligand,Charge transfer and intra-metal transitions.2.4.3 Selection rules for electronic transitions.2.4.4 Electronic configuration and electronic micro states, Terms and Term symbols for transition metal ions, rules for determination	
2.4 Electronic Spectra. (3L)2.4.1Origin of electronic spectra2.4.2 Types of electronic transitions in coordination compounds: intra- ligand, Charge transfer and intra-metal transitions.2.4.3 Selection rules for electronic transitions.2.4.4 Electronic configuration and electronic micro states, Terms and Term symbols for transition metal ions, rules for determination of ground state term	
 2.4 Electronic Spectra. (3L) 2.4.1Origin of electronic spectra 2.4.2 Types of electronic transitions in coordination compounds: intra- ligand,Charge transfer and intra-metal transitions. 2.4.3 Selection rules for electronic transitions. 2.4.4 Electronic configuration and electronic micro states, Terms and Term symbols for transition metal ions, rules for determination of ground state term. 2.4.5 Determination of Terms for p² and d¹ electronic configurations 	
2.4 Electronic Spectra.(3L)2.4.1Origin of electronic spectra2.4.2 Types of electronic transitions in coordination compounds: intra- ligand,Charge transfer and intra-metal transitions.2.4.3 Selection rules for electronic transitions.2.4.4 Electronic configuration and electronic micro states, Terms and Term symbols for transition metal ions, rules for determination of ground state term.2.4.5 Determination of Terms for p² and d¹ electronic configurations.UNIT-III	
2.4 Electronic Spectra.(3L)2.4.1Origin of electronic spectra2.4.2 Types of electronic transitions in coordination compounds: intra- ligand,Charge transfer and intra-metal transitions.2.4.3 Selection rules for electronic transitions.2.4.4 Electronic configuration and electronic micro states, Terms and Term symbols for transition metal ions, rules for determination of ground state term.2.4.5 Determination of Terms for p² and d¹ electronic configurations.UNIT-III3 ORGANOMETALLIC CHEMISTRY(15L)	
2.4 Electronic Spectra.(3L)2.4.1Origin of electronic spectra2.4.2 Types of electronic transitions in coordination compounds: intra- ligand, Charge transfer and intra-metal transitions.2.4.3 Selection rules for electronic transitions.2.4.4 Electronic configuration and electronic micro states, Terms and Term symbols for transition metal ions, rules for determination of ground state term.2.4.5 Determination of Terms for p² and d¹ electronic configurations.UNIT-III3 ORGANOMETALLIC CHEMISTRY(15L)3.1 Organometallic Compounds of main group metal	
2.4 Electronic Spectra.(3L)2.4.1Origin of electronic spectra2.4.2 Types of electronic transitions in coordination compounds: intra- ligand, Charge transfer and intra-metal transitions.2.4.3 Selection rules for electronic transitions.2.4.4 Electronic configuration and electronic micro states, Terms and Term symbols for transition metal ions, rules for determination of ground state term.2.4.5 Determination of Terms for p² and d¹ electronic configurations.UNIT-III3 ORGANOMETALLIC CHEMISTRY3.1 Organometallic Compounds of main group metal (6L)3.1.1General characteristics of various types of organometallic	
 2.4 Electronic Spectra. (3L) 2.4.1Origin of electronic spectra 2.4.2 Types of electronic transitions in coordination compounds: intra- ligand, Charge transfer and intra-metal transitions. 2.4.3 Selection rules for electronic transitions. 2.4.4 Electronic configuration and electronic micro states, Terms and Term symbols for transition metal ions, rules for determination of ground state term. 2.4.5 Determination of Terms for p² and d¹ electronic configurations. UNIT-III 3 ORGANOMETALLIC CHEMISTRY (15L) 3.1 Organometallic Compounds of main group metal (6L) 3.1.1General characteristics of various types of organometallic compounds, viz.ionic, σ-bonded and electron deficient 	
 2.4 Electronic Spectra. (3L) 2.4.1Origin of electronic spectra 2.4.2 Types of electronic transitions in coordination compounds: intra- ligand, Charge transfer and intra-metal transitions. 2.4.3 Selection rules for electronic transitions. 2.4.4 Electronic configuration and electronic micro states, Terms and Term symbols for transition metal ions, rules for determination of ground state term. 2.4.5 Determination of Terms for p² and d¹ electronic configurations. UNIT-III 3 ORGANOMETALLIC CHEMISTRY (15L) 3.1 Organometallic Compounds of main group metal (6L) 3.1.1General characteristics of various types of organometallic compounds, viz.ionic, σ-bonded and electron deficient compounds. 	
 2.4 Electronic Spectra. (3L) 2.4.1Origin of electronic spectra 2.4.2 Types of electronic transitions in coordination compounds: intra- ligand, Charge transfer and intra-metal transitions. 2.4.3 Selection rules for electronic transitions. 2.4.4 Electronic configuration and electronic micro states, Terms and Term symbols for transition metal ions, rules for determination of ground state term. 2.4.5 Determination of Terms for p² and d¹ electronic configurations. UNIT-III 3 ORGANOMETALLIC CHEMISTRY (15L) 3.1 Organometallic Compounds of main group metal (6L) 3.1.1General characteristics of various types of organometallic compounds, viz.ionic, σ-bonded and electron deficient compounds. 3.1.2 General synthetic methods of organometallic compounds : (i) 	
 2.4 Electronic Spectra. (3L) 2.4.1Origin of electronic spectra 2.4.2 Types of electronic transitions in coordination compounds: intra- ligand, Charge transfer and intra-metal transitions. 2.4.3 Selection rules for electronic transitions. 2.4.4 Electronic configuration and electronic micro states, Terms and Term symbols for transition metal ions, rules for determination of ground state term. 2.4.5 Determination of Terms for p² and d¹ electronic configurations. UNIT-III 3 ORGANOMETALLIC CHEMISTRY (15L) 3.1 Organometallic Compounds of main group metal (6L) 3.1.1General characteristics of various types of organometallic compounds, viz.ionic, σ-bonded and electron deficient compounds. 3.1.2 General synthetic methods of organometallic compounds : (i) Oxidative-addition, (ii)Metal-metal 	
 2.4 Electronic Spectra. (3L) 2.4.1Origin of electronic spectra 2.4.2 Types of electronic transitions in coordination compounds: intra- ligand, Charge transfer and intra-metal transitions. 2.4.3 Selection rules for electronic transitions. 2.4.4 Electronic configuration and electronic micro states, Terms and Term symbols for transition metal ions, rules for determination of ground state term. 2.4.5 Determination of Terms for p² and d¹ electronic configurations. UNIT-III 3 ORGANOMETALLIC CHEMISTRY (15L) 3.1 Organometallic Compounds of main group metal (6L) 3.1.1General characteristics of various types of organometallic compounds, viz.ionic, σ-bonded and electron deficient compounds. 3.1.2 General synthetic methods of organometallic compounds : (i) Oxidative-addition, (ii)Metal-metal exchange(transmetallation), (iii) Carbanion-halide exchange, 	
 2.4 Electronic Spectra. (3L) 2.4.1Origin of electronic spectra 2.4.2 Types of electronic transitions in coordination compounds: intra- ligand, Charge transfer and intra-metal transitions. 2.4.3 Selection rules for electronic transitions. 2.4.4 Electronic configuration and electronic micro states, Terms and Term symbols for transition metal ions, rules for determination of ground state term. 2.4.5 Determination of Terms for p² and d¹ electronic configurations. UNIT-III 3 ORGANOMETALLIC CHEMISTRY (15L) 3.1 Organometallic Compounds of main group metal (6L) 3.1.1General characteristics of various types of organometallic compounds, viz.ionic, σ-bonded and electron deficient compounds. 3.1.2 General synthetic methods of organometallic compounds : (i) Oxidative-addition, (ii)Metal-metal exchange(transmetallation), (iii) Carbanion-halide exchange, (iv) Metal-hydrogen exchange(metallation) and (v) Methylene- 	
 2.4 Electronic Spectra. (3L) 2.4.1Origin of electronic spectra 2.4.2 Types of electronic transitions in coordination compounds: intra- ligand, Charge transfer and intra-metal transitions. 2.4.3 Selection rules for electronic transitions. 2.4.4 Electronic configuration and electronic micro states, Terms and Term symbols for transition metal ions, rules for determination of ground state term. 2.4.5 Determination of Terms for p² and d¹ electronic configurations. UNIT-III 3 ORGANOMETALLIC CHEMISTRY (15L) 3.1 Organometallic Compounds of main group metal (6L) 3.1.1General characteristics of various types of organometallic compounds, viz.ionic, σ-bonded and electron deficient compounds. 3.1.2 General synthetic methods of organometallic compounds : (i) Oxidative-addition, (ii)Metal-metal exchange(transmetallation), (iii) Carbanion-halide exchange, (iv) Metal-hydrogen exchange(metallation) and (v) Methylene- insertion reactions. 	

(i) Reactions with oxygen and halogens, (ii) Alkylation and	
arylation reactions (iii) Reactions with protic reagents, (iv)	
Redistribution reactions and (v) Complex formation reactions.	
3.2 Metallocenes (5L)	
Introduction, Ferrocene : Synthesis, properties, structure and	
bonding on the basis of VBT.	
3.3 Catalysis (4L)	
3.3.1 Comparison between homogeneous and heterogeneous	
catalysis	
3.3.2 Basic steps involved in homogeneous catalysis	
3.3.3 Mechanism of Wilkinson's catalyst in hydrogenation of	
alkenes.	
UNIT-IV	
4 SOME SELECTED TOPICS (15L)	
4.1 Metallurgy (7L)	
4.1.1 Types of metallurgies,	
4.1.2 General steps of metallurgy; Concentration of ore,	
calcinations, roasting, reduction and refining.	
4.1.3 Metallurgy of copper: occurrence, physicochemical principles,	
Extraction of copper from pyrites& refining by electrolysis.	
4.2 Chemistry of Group 18 (5L)	
4.2.1 Historical perspectives	
4.2.2 General characteristics and trends in physical and chemical	
properties	
4.2.3 Isolation of noble gases	
4.2.4 Compounds of Xenon (oxides and fluorides) with respect to	
preparation and structure (VSEPR)	
4.2.5 Uses of noble gases	
4.3 Introduction to Bioinorganic Chemistry. (3L)	
4.3.1Essential and non essential elements in biological systems.	
4.3.2 Biological importance of metal ions such as Na ⁺ ,K ⁺ ,Fe ⁺² /Fe ⁺³	
and Cu ⁺² (Role of Na ⁺ and K ⁺ w.r.t ion pump)	

References.

Unit-I:

- 1. Geoffrey A. Lawrance Introduction to Coordination Chemistry John Wiley & Sons.
- 2. R. K. Sharma Text Book of Coordination Chemistry Discovery Publishing House
- 3. R. Gopalan , V. Ramalingam Concise Coordination Chemistry , Vikas Publishing House;
- 4. Shukla P R, Advance Coordination Chemistry , Himalaya Publishing House
- 5. Glen E. Rodgers, Descriptive Inorganic, Coordination, and Solid-State Chemistry Publisher: Thomson Brooks/Cole

Unit-II:

- 1. Ramesh Kapoor and R.S. Chopra, Inorganic Chemistry, R. Chand publishers,
- 2. Basolo, F, and Pearson, R.C., Mechanisms of Inorganic Chemistry, John Wiley & Sons, NY,
- 3. Twigg ,Mechanisms of Inorganic and Organometallic Reactions Publisher: Springer
- 4 R.K. Sharma Inorganic Reaction Mechanisms Discovery Publishing House
- 5 M. L. Tobe Inorganic Reaction Mechanisms Publisher Nelson, 1972

Unit-III:

- 1 Cotton, Wilkinson, Murillo and Bochmann, Advanced **Inorganic Chemistry**, 6th Edition.
- 2 H.W. Porterfield, Inorganic Chemistry, Second Edition, Academic Press, 2005
- 3 Purecell, K.F. and Kotz, J.C., Inorganic Chemistry W.B. Saunders Co. 1977.
- 4 Robert H. Crabtree ,The Organometallic Chemistry of the Transition Metals, Publication by John Wiley & Sons
- 5 B D Gupta & Anil J Elias Basic Organometallic Chemistry: Concepts, Syntheses and Applications, University press
- 6 Ram Charan Mehrotra, Organometallic Chemistry: A Unified Approach, New Age International.

Unit-IV

- 1 R. Gopalan, Inorganic Chemistry for Undergraduates, Universities Press India.
- 2 D. F. Shriver and P. W. Atkins, Inorganic chemistry, 3rd edition, Oxford University Press
- 3 Cotton, Wilkinson, Murillo and Bochmann, Advanced Inorganic Chemistry, 6th Edition.
- 4 Jack Barrett and Mounir A Malati, Fundamentals of Inorganic Chemistry, Affiliated East west Press Pvt. Ltd., New Delhi.
- 5 R.Gopalan, Chemistry for undergraduates. Chapter 18. Principles of Metallurgy.(567-591)
- 6 Puri ,Sharma Kalia Inorganic chemistry. Chapter 10, Metals and metallurgy.(328-339)

- 7 Greenwood, N.N. and Earnshaw, Chemistry of the Elements, Butterworth Heinemann. 1997.
- 8 Huheey, J.E., Inorganic Chemistry, Prentice Hall, 1993.
- 9 Lippard, S.J. & Berg, J.M. Principles of Bioinorganic Chemistry Panima Publishing Company 1994.
- 10 Satya Prakash, G.D.Tuli, R.D. Madan , , Advanced Inorganic Chemistry.S. Chand & Co Ltd

PRACTICALS

SEMESTER VI

INORGANIC CHEMISTRY

COURSE CODE: USCHP06

CREDITS: 02

I. Inorganic preparations

- 1. Preparation of Tris(acetylacetonato) iron(III)
- 2. Green synthesis of bis(dimethylglyoximato) nickel(II) complex using nickel carbonate and sodium salt of dmg.
- 3. Preparation of potassium trioxalato aluminate (III)
- II. Determination of percentage purity of the given water soluble salt and qualitative detection w.r.t added cation and/or anion (qualitative analysis only by wet tests).

(Any three salts of main group metal ions)

Reference Books (practicals)

- 4. Vogel Textbook of Quantitative Chemical Analysis G.H. Jeffery, J. Basset.
- Advanced experiments in Inorganic Chemistry., G. N. Mukherjee., 1st Edn., 2010., U.N.Dhur & Sons Pvt Ltd.
- 6. Vogel's. Textbook of. Macro and Semimicro qualitative inorganic analysis. Fifth edition.

T.Y.B.Sc. CHEMISTRY (6 UNITS)

Choice Based Credit System

SEMESTER V

ANALYTICAL CHEMISTRY

COURSE CODE: USCH504 CREDITS: 02 LECTURES: 60

UNIT I :INTRODUCTION TO QUALITY CONCEPTS,CHEMICAL CALCULATIONS AND SAMPLING (3 & 6 UNITS)

1.1	Quality in Analytical Chemistry			
	1.1.1	Concepts of Quality, Quality Control and Quality Assurance		
	1.1.2	1.2 Importance of Quality concepts in Industry		
	113	Chemical Standards and Certified Reference Materials: Importance		
	1.1.5	in chemical analysis		
		Ovality of motorials Variana, and as of laboratory responds		
		Quality of material: Various grades of laboratory reagents		
1.2	Chemica	al Calculations (Numericals and word problems are expected)	04 L	
		Inter conversion of various concentration units.		
	1.2.1	(Conversion of concentration from one unit to another unit with		
		examples)		
	1.2.2	Percent composition of elements in chemical compounds	-	
1.3	Samplin	ing		
	1.3.1	Purpose, significance and difficulties encountered in sampling		
	1.3.2	Sampling of solids: Sample size - bulk ratio, size to weight ratio,		
		multistage and sequential sampling, size reduction methods,		
		sampling of compact solids, equipments and methods of sampling		
		of compact solids, sampling of particulate solids, methods and		
		equipments used for sampling of particulate solids.		
	1.3.3	Sampling of liquids: Homogeneous and heterogeneous, Static and		
		flowing liquids.		
	1.3.4	Sampling of gases: Ambient and stack sampling: Apparatus and	1	

		methods for sampling of gases.	
	1.3.5	Collection, preservation and dissolution of the sample.	
			1
UNI	T II : CL	ASSICAL METHODS OF ANALYSIS (TITRIMETRY) (3 & 6 U	NITS)
2.1	Redox Titrations (Numerical and word Problems are expected)		
	2.1.1	Introduction	
		Construction of the titration curves and calculation of E_{system} in	
	2.1.2	aqueous medium in case of:	
		(1) One electron system	
		(2) Multielectron system	
	2.1.3	Theory of redox indicators, Criteria for selection of an indicator	
		Use of diphenyl amine and ferroin as redox indicators	
2.2	Complex	xometric Titrations	07 L
	0.0.1		
	2.2.1	Introduction, construction of titration curve	_
	2.2.2	Use of EDTA as titrant and its standardisation, absolute and conditional formation constants of metal EDTA complexes	
		Selectivity of EDTA as a titrant.	
		Factors enhancing selectivity with examples.	
		Advantages and limitations of EDTA as a titrant.	
	2.2.3	Types of EDTA titrations.	
	2.2.4	Metallochromic indicators, theory, examples and applications	
			1
UNI	T III: OF	TICAL METHODS(6 UNITS)	
3.1	Atomic S	Spectroscopy: Flame Emission spectroscopy(FES) and	07 L
	Atomic A	Absorption Spectroscopy(AAS)	
	3.1.1	Introduction, Energy level diagrams, Atomic spectra, Absorption	
		and Emission Spectra	
	3.1.2	Flame Photometry – Principle, Instrumentation (Flame atomizers,	1
		types of Burners, Wavelength selectors, Detectors)	
	3.1.3	Atomic Absorption Spectroscopy – Principle, Instrumentation	1
		(Source, Chopper, Flame and Electrothermal Atomiser)	
	3.1.4	Quantification methods of FES and AAS – Calibration curve	
		method, Standard addition method and Internal standard method.	

	3.1.5	Comparison between FES and AAS	
	3.1.6	Applications, Advantages and Limitations	
3.2	Molecular Fluorescence and Phosphorescence Spectroscopy		
	3.2.1	Introduction and Principle	
	3.2.2	Relationship of Fluorescence intensity with concentration	
	3.2.3	Factors affecting Fluorescence and Phosphorescence	
	3.2.4	Instrumentation and applications	
	3.2.5	Comparison of Fluorimetry and Phosphorimetry	
	3.2.6	Comparison with Absorption methods	
3.3	Turbidimetry and Nephelometry		
	3.3.1	Introduction and Principle	
	3.3.2	Factors affecting scattering of Radiation:	
		Concentration, particle size, wavelength, refractive index	
	3.3.3	Instrumentation and Applications	
UNI	T IV: MI	ETHODS OF SEPARATION – I (6 UNITS)	
4.1	Solvent Extraction		
			002
	4.1.1	Factors affecting extraction: Chelation, Ion pair formation and	
	4.1.1	Factors affecting extraction: Chelation, Ion pair formation and Solvation	
	4.1.1	Factors affecting extraction: Chelation, Ion pair formation and SolvationGraph of percent extraction versus pH.	
	4.1.1	Factors affecting extraction: Chelation, Ion pair formation and SolvationGraph of percent extraction versus pH. Concept of [pH] _{1/2} and its significance (derivation not expected)	
	4.1.1 4.1.2 4.1.3	Factors affecting extraction: Chelation, Ion pair formation and SolvationGraph of percent extraction versus pH. Concept of [pH] _{1/2} and its significance (derivation not expected)Craig's counter current extraction: Principle, apparatus and applications	
	4.1.1 4.1.2 4.1.3 4.1.4	 Factors affecting extraction: Chelation, Ion pair formation and Solvation Graph of percent extraction versus pH. Concept of [pH]_{1/2} and its significance (derivation not expected) Craig's counter current extraction: Principle, apparatus and applications Solid phase extraction: Principle, process and applications with 	
	4.1.1 4.1.2 4.1.3 4.1.4	 Factors affecting extraction: Chelation, Ion pair formation and Solvation Graph of percent extraction versus pH. Concept of [pH]_{1/2} and its significance (derivation not expected) Craig's counter current extraction: Principle, apparatus and applications Solid phase extraction: Principle, process and applications with special reference to water and industrial effluent analysis. 	
	 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 	 Factors affecting extraction: Chelation, Ion pair formation and Solvation Graph of percent extraction versus pH. Concept of [pH]_{1/2} and its significance (derivation not expected) Craig's counter current extraction: Principle, apparatus and applications Solid phase extraction: Principle, process and applications with special reference to water and industrial effluent analysis. Comparison of solid phase extraction and solvent extraction. 	
4.2	 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 High H 	 Factors affecting extraction: Chelation, Ion pair formation and Solvation Graph of percent extraction versus pH. Concept of [pH]_{1/2} and its significance (derivation not expected) Craig's counter current extraction: Principle, apparatus and applications Solid phase extraction: Principle, process and applications with special reference to water and industrial effluent analysis. Comparison of solid phase extraction and solvent extraction. 	06L
4.2	 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 High H 4.2.1 	Factors affecting extraction: Chelation, Ion pair formation and Solvation Graph of percent extraction versus pH. Concept of [pH] _{1/2} and its significance (derivation not expected) Craig's counter current extraction: Principle, apparatus and applications Solid phase extraction: Principle, process and applications with special reference to water and industrial effluent analysis. Comparison of solid phase extraction and solvent extraction.	06L
4.2	 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 High H 4.2.1 	Factors affecting extraction: Chelation, Ion pair formation and Solvation Graph of percent extraction versus pH. Concept of [pH] _{1/2} and its significance (derivation not expected) Craig's counter current extraction: Principle, apparatus and applications Solid phase extraction: Principle, process and applications with special reference to water and industrial effluent analysis. Comparison of solid phase extraction and solvent extraction.	06L
4.2	 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 High F 4.2.1 	Factors affecting extraction: Chelation, Ion pair formation and Solvation Graph of percent extraction versus pH. Concept of [pH] _{1/2} and its significance (derivation not expected) Craig's counter current extraction: Principle, apparatus and applications Solid phase extraction: Principle, process and applications with special reference to water and industrial effluent analysis. Comparison of solid phase extraction and solvent extraction. Performance Liquid chromatography (HPLC) Introduction and Principle Instrumentation- components with their significance: Solvent Reservoir, Degassing system, Pumps-(reciprocating pumps,	06L
4.2	 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 High F 4.2.1 	Factors affecting extraction: Chelation, Ion pair formation and Solvation Graph of percent extraction versus pH. Concept of [pH] _{1/2} and its significance (derivation not expected) Craig's counter current extraction: Principle, apparatus and applications Solid phase extraction: Principle, process and applications with special reference to water and industrial effluent analysis. Comparison of solid phase extraction and solvent extraction. Performance Liquid chromatography (HPLC) Introduction and Principle Instrumentation- components with their significance: Solvent Reservoir, Degassing system, Pumps-(reciprocating pumps, screw driven- syringe type pumps, pneumatic pumps, advantages and disadvantages of each pump) Precolumn	06L
4.2	 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 High F 4.2.1 	Factors affecting extraction: Chelation, Ion pair formation and Solvation Graph of percent extraction versus pH. Concept of [pH] _{1/2} and its significance (derivation not expected) Craig's counter current extraction: Principle, apparatus and applications Solid phase extraction: Principle, process and applications with special reference to water and industrial effluent analysis. Comparison of solid phase extraction and solvent extraction. Performance Liquid chromatography (HPLC) Introduction and Principle Instrumentation- components with their significance: Solvent Reservoir, Degassing system, Pumps-(reciprocating pumps, screw driven- syringe type pumps, pneumatic pumps, advantages and disadvantages of each pump), Precolumn, Sample injection system, HPLC Columns, Detectors(UV –	06L
4.2	 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 High F 4.2.1 	Factors affecting extraction: Chelation, Ion pair formation and Solvation Graph of percent extraction versus pH. Concept of [pH] _{1/2} and its significance (derivation not expected) Craig's counter current extraction: Principle, apparatus and applications Solid phase extraction: Principle, process and applications with special reference to water and industrial effluent analysis. Comparison of solid phase extraction and solvent extraction. Performance Liquid chromatography (HPLC) Introduction and Principle Instrumentation- components with their significance: Solvent Reservoir, Degassing system, Pumps-(reciprocating pumps, screw driven- syringe type pumps, pneumatic pumps, advantages and disadvantages of each pump), Precolumn, Sample injection system, HPLC Columns, Detectors(UV – Visible detector, Refractive index detector) Qualitative and Quantitative Applications of HPLC	06L

4.3	High Performance Thin Layer Chromatography (HPTLC)		03 L
	4.3.1	Introduction and Principle	_
		Stationary phase, Sample application and mobile phase	
	4.3.2	Detectors	
		a) Scanning densitometer- Components.	
		Types of densitometer- Single beam and Double beam	
		b) Fluorometric Detector	
	4.3.3	Advantages, disadvantages and applications	
	4.3.4	Comparison of TLC and HPTLC	
			1

REFERENCES

1.	3000 solved problems in Chemistry, David E. Goldberg,PhD.,Schaums Outline	Unit/s: (1.2)
2.	A guide to Quality in Analytical Chemistry: An aid to accreditation, CITAC and EURACHEM, (2002),	Unit/s (1.1)
3.	A premier sampling solids, liquids and gases, Smith Patricia I, American statistical association and the society for industrial and applied mathematics, (2001)	Unit/s (1.3)
4.	Analytical Chemistry, Gary.D Christan, 5th edition	Unit/s (4.1,4.2,4.3)
5.	Analytical Chemistry Skoog, West ,Holler,7th Edition:	Unit/s (2.1)
6.	Analytical Chromatography, Gurdeep R Chatwal, Himalaya publication	Unit/s (4.1,4.2,4.3)
7.	Basic Concepts of Analytical Chemistry, by S M Khopkar, new Age International (p) Limited	Unit/s (4.1,4.2,4.3)
8.	Chemical methods of separation, J A Dean, Van Nostrand Reinhold, 1969	Unit/s (4.1,4.2,4.3)
9.	Fundamentals of Analytical Chemistry by Skoog and West, 8th Edition	Unit/s (4.1,4.2,4.3)
10.	Handbook of quality assurance for the analytical chemistry laboratory, 2ndEdn., James P. DuxVanNostr and Reinhold, 1990	Unit/s (1.1)
11.	High Performance Thin Layer Chromatography by Dr P.D. Sethi, CBS Publisher and Distribution	Unit/s(4.1,4.2,4.3)

12.	High Performance Thin Layer Chromatography in Food analysis, by Prem kumar, CBS Publisher and distributer	Unit/s (4.1,4.2,4.3)
13.	Instrumental methods of Analysis, by Dr Supriya S Mahajan, Popular Prakashan Ltd	Unit/s (4.1,4.2,4.3)
14.	Instrumental methods Of Analysis, by Willard Merritt Dean, 7thEdition, CBS Publisher and distribution Pvt Ltd	Unit/s (3.1,3.2,3.3)
15.	Instrumental Methods of Chemical Analysis by B.K. Sharma Goel Publishing House	Unit/s (4.1,4.2,4.3)
16.	Principles of Instrumental Analysis , 5th Edition, By Skoog, Holler, Nieman	Unit/s (4.1,4.2,4.3)(3.1,3.2,3.3)
17.	Quality control and Quality assurance in Analytical Chemical Laboratory, Piotr Konieczka and Jacek Namiesnik, CRC press (2018)	Unit/s (1.1)
18.	Quality in the Analytical Chemistry Laboratory, Elizabeth Prichard, Neil T. Crosby, Florence Elizabeth Prichard, John Wiley and Sons, 1995	Unit/s (1.1)
19.	Solvent extraction and ion exchange, J Marcus and A. S. Kertes Wiley INC 1969	Unit/s (4.1,4.2,4.3)
20	Thin Layer Chromatography, A LAB. Handbook, Egon Stahl, Springer International Student Edition	Unit/s (4.1,4.2,4.3)

PRACTICALS

SEMESTER V

ANALYTICAL CHEMISTRY

COURSE CODE: USCHP13

CREDITS: 02

- 1. Spectrophotometric estimation of fluoride
- 2 Estimation of magnesium content in Talcum powder by complexometry, using standardized solution of EDTA
- 3 Determination of COD of water sample.
- 4 To determine potassium content of a Fertilizer by Flame Photometry (Calibration curve method).
- 5 To determine the amount of persulphate in the given sample solution by back titration with standard Fe (II) ammonium sulphate solution.
- 6 To determine the amount of sulphate in given water sample turbidimetrically.

Note: Calculation of percent error is expected for all the

experiments.
REFERENCES

Г

1.	Vogel's Textbook of Quantitative Chemical Analysis, 5thEdn., G. H. Jeffery, J Bassett, J Memdham and R C Denney, ELBS with Longmann (1989).			
2.	Vogel's Textbook of Quantitative Chemical analysis, Sixth edition, J.Mendham et.al			
		SEMESTER VI ANALYTICAL CHEMISTRY		
CO	COURSE CODE: USCH604 CREDITS: 02 LECTURES: 60			
UNI	T I: ELE	CTRO ANALYTICAL TECHNIQUES(3 & 6 UNITS)		
1.1	Polarog	raphy (Numerical and word problems are expected)	11L	
	1.1.1	Difference between potentiometry and voltammetry, Polarizable and non-polarizable electrodes		
	1.1.2	Basic principle of polarography H shaped polarographic cell, DME (construction, working, advantages and limitations)		
	1.1.3	DC polarogram: Terms involved - Residual current, Diffusion current, Limiting current, Half-Wave Potential Role and selection of supporting electrolyte, Interference of oxygen and its removal, polarographic Maxima and Maxima Suppressors Qualitative aspects of Polarography: Half wave potential $E_{1/2}$, Factors affecting $E_{1/2}$ Quantitative aspects of polarography: Ilkovic equations: various terms involved in it (No derivation)		
	1.1.4	Quantification 1) Wave height – Concentration plots (working plots/calibration) 2) Internal standard (pilot ion) method 3) Standard addition method		
	1.1.5	Applications advantages and limitations		
1.2	Ampero	ometric Titrations	04L	
	1.2.1	Principle, Rotating Platinum Electrode(Construction, advantages and limitations)		
	1.2.2	Advantages and limitations		
	1.2.3			

UNI	T II: ME	THODS OF SEPARATION - II (3 & 6 UNITS)			
2.1	Gas Chi	romatography (Numerical and word problems are expected)	09 L		
	2.1.1	Introduction, Principle, Theory and terms involved			
	2.1.2	Instrumentation: Block diagram and components, types of columns,			
		stationary phases in GSC and GLC, Detectors: TCD, FID, ECD			
	2.1.3	Qualitative, Quantitative analysis and applications			
	2.1.4	Comparison between GSC and GLC			
2.2	Ion Exchange Chromatography				
	2.2.1	Introduction, Principle.			
	2.2.2	Types of Ion Exchangers, Ideal properties of resin			
		Ion Exchange equilibria and mechanism, selectivity coefficient and			
	2.2.3	separation factor			
		Factors affecting separation of ions			
	224	Ion exchange capacity and its determination for cation and anion			
	2.2.4	exchangers.			
	225	Applications of Ion Exchange Chromatography with reference to			
	2.2.5	Preparation of demineralised water, Separation of amino acids			
UN	IT III:FC	OOD AND COSMETICS ANALYSIS(6 UNITS)			
3.1	Introdu	Introduction to food chemistry			
	3.1.1	Food processing and preservation:			
		Introduction, need, chemical methods, action of chemicals(sulphur			
		dioxide, boric acid, sodium benzoate, acetic acid, sodium chloride			
		and sugar) and pH control			
		Physical methods (Pasteurization and Irradiation)			
	3.1.2	Determination of boric acid by titrimetry and sodium benzoate by			
		HPLC.			
	3.1.3	Study and analysis of food products and detection of adulterants			
		1) Milk:			
		Composition & nutrients, types of milk (fat free, organic and lactose			
		milk) Analysis of milk for lactose by Lane Evnon's Method			
		Thatysis of milk for factose by Lane Eynon's Method			

		2) Honey:		
		Composition Analysis of reducing sugars in honey by Coles Ferricyanide method		
		3) Tea:		
		Composition, types (green tea and mixed tea) Analysis of Tannin by Lowenthal's method		
		4) Coffee:		
		Constituents and composition, Role of Chicory Analysis of caffeine by Bailey Andrew method		
3.2	Cosmetics			
	3.2.1	Introduction and sensory properties		
	3.2.2 Study of cosmetic products –			
	1) Face powder:			
		Composition Estimation of calcium and magnesium by complexometric titration		
		2) Lipstick:		
		Constituents Ash analysis for water soluble salts: borates, carbonates and zinc oxide		
		3) Deodorants and Antiperspirants:		
		Constituents, properties Estimation of zinc by gravimetry		
UNI	T IV:TH	ERMAL METHODS AND ANALYTICAL METHOD VALIDATI	ON	
(6 U	(6 UNITS)			
4.1	Therma	Thermal Methods		
	4.1.1	Introduction to various thermal methods		
		(TGA, DTA and Thermometric titration)		

	4.1.2	Thermogravimetric Analysis(TGA)	
		Instrumentation-block diagram,thermobalance (Basic components: balance, furnace, temperature measurement and control, recorder)	
		Thermogram (TG curve)forCaC ₂ O _{4.} H ₂ O and CuSO ₄ .5H ₂ O Factors affecting thermogram-Instrumental factors and Sample characteristics	
		Applications:	
		Determination of drying and ignition temperature range	
		Determination of percent composition of binary mixtures (Estimation of Calcium and Magnesium oxalate)	
	4.1.3	Differential Thermal Analysis (DTA):	
		Principle, Instrumentation, and Reference material used	
		Differential thermogram (DTA curve) CaC ₂ O ₄ .H ₂ O and	
		CuSO ₄ .5H ₂ O	
		Applications	
		Comparison between TGA and DTA.	
	4.1.4	Thermometric Titrations – Principle and Instrumentation	
		Thermometric titrations of :	
		1) HCl v/s NaOH	
		2) Boric acid v/s NaOH	
		3) Mixture of Ca^{+2} and Mg^{+2} v/s EDTA	
		4) Zn^{+2} with Disodium Tartarate.	
4.2	Analytical Method Validation		03L
	4.2.1	Introduction and need for validation of a method	
	4.2.2	Validation Parameters: Specificity, Selectivity, Precision, Linearity,	
		Accuracy and Robustness	

Note: Concept of sensitivity is to be discussed for all techniques and instruments mentioned in the syllabus.

REFERENCES

1.	An Advance Dairy chemistry, V 3, P. F. Fox, P. L. H. McSweeney Springer	Unit/s (3.1,3.2)
----	--	------------------

2.	Analysis of food and Beverages, George Charalanbous, Academic press 1978	Unit/s (3.1,3.2)
3.	Analytical Chemistry of Open Learning(ACOL),James W. Dodd & Kenneth H. Tonge	Unit/s (4.1,4.2)
4.	Analytical chemistry David Harvey The ,McGraw Hill Companies, Inc.	Unit/s (4.1,4.2)
5.	Analytical Chemistry, Gary.D Christan, 5th edition	Unit/s (2.1,2.2)
6.	Analytical chemistry, R. K. Dave.	Unit/s (2.1,2.2)
7.	Chemical methods of separation, J A Dean, Van Nostrand Reinhold, 1969	Unit/s (2.1,2.2)
8.	Egyankosh.ac.in/bitstream/123456789/43329/1/Unit-8	Unit/s (1.1,1.2,1.3)
9.	Food Analysis, Edited by S. Suzanne Nielsen, Springer	Unit/s (3.1,3.2)
10.	Food Analysis: Theory and practice, YeshajahuPomeranz, Clifton E. Meloan, Springer	Unit/s (3.1,3.2)
11.	Formulation and Function of cosmetics, Sa Jellineck	Unit/s (3.1,3.2)
12.	Fundamentals of Analytical Chemistry, D .A. Skoog and D. M. West and F. J. Holler Holt., Saunders 6th Edition (1992)	Unit/s (2.1,2.2)
13.	Government of India publications of food drug cosmetic act and rules.	Unit/s (3.1,3.2)
14.	Harry's Cosmetology, Longman scientific co.	Unit/s (3.1,3.2)
15.	High Performance Thin Layer Chromatography in Food analysis, by Prem kumar, CBS Publisher and distributer	Unit/s (3.1,3.2)
16.	Instrumental methods Of Analysis, by Willard Merritt Dean, 7thEdition, CBS Publisher and distribution Pvt Ltd	Unit/s (1.1,1.2,1.3) (4.1,4.2,4.3)
17.	Introduction to Polarography and Allied Techniques, By Kamala Zutshi, New Age International, 2006.	Unit/s (1.1,1.2,1.3)
18.	Modern cosmetics, E. Thomessen Wiley Inter science	Unit/s (3.1,3.2)

19.	Principles of Instrumental Analysis , 5th Edition, By Skoog, Holler, Nieman	Unit/s (4.1,4.2,4.3)
20.	Principles of Polarography by Jaroslav Heyrovský, Jaroslav Kůta, 1st Edition, Academic Press, eBook ISBN: 978148326478	Unit/s (1.1,1.2,1.3)
21.	Solvent extraction and ion exchange, J Marcus and A. S. Kertes Wiley INC 1969	Unit/s (2.1,2.2,)

PRACTICALS SEMESTER VI ANALYTICAL CHEMISTRY

COURSE CODE: USCHP14

CREDITS: 02

- 1 Estimation of Chromium in water sample spectrophotometrically by using Diphenyl carbazide.
- 2 Estimation of reducing sugar in honey by Willstatter method.
- 3 Estimation o Mg⁺² & Zn⁺² by anion exchange resin. using an anion exchange resin
- 4 Estimation of acetic acid in Vinegar sample by using Quinhydrone electrode potentiometrically.
- 5 Determination of phosphoric acid in cola sample pH metrically.

Note: Calculation of percent error is expected for all the

experiments.

References:

1	Vogel's Textbook of Quantitative Chemical Analysis, 5thEdn., G. H. Jeffery, J Bassett, J
1.	Memdham and R C Denney, ELBS with Longmann (1989).

2.	Vogel's Textbook of Quantitative Chemical analysis, Sixth edition, J.Mendham et.al	
3.	The chemical analysis of food and food products III edition Morris Jacob	
4.	The chemical analysis of food by David Pearson and Henry Edward	